• 제목/요약/키워드: thin-film type

검색결과 1,288건 처리시간 0.032초

자속구속형 고온초전도 전류제한기 동작 특성 (Operational characteristic of flux-lock type HTSC-FCL)

  • 임성훈;최효상;강형곤;고석철;이종화;최명호;송재주;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 기술교육전문연구회
    • /
    • pp.20-23
    • /
    • 2003
  • The operational characteristics of flux-lock type high-Tc superconducting fault currentlimiters(HTSC-FCLs) was described and currents equation at each coil was derived from equivalent circuit. $YBa_{2}Cu_{3}O_{7-x}$(YBCO) thin film was used as the current limiting elements of the flux-lock type HTSC-FCL, which were fabricated by etching the YBCO thin film into 2 mm wide and 420 mm long meander line consisting of foureen stripes with different length. The 2nd peak on the current of coil 2 after a fault disappeared by current of the 3rd winding, which was installed in the flux-lock type HTSC-FCL.

  • PDF

유기 반도체 CuPccp LB초박막의 제작 및 특성 (Fabrication and Properties of Organic Semiconductor CuPccp LB Thin Film)

  • 조민재;쑤양싸이양;이진수;안다현;정치섭
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.23-29
    • /
    • 2019
  • A copper tetracumylphenoxy phthalocyanine (CuPccp) thin film was formed on an organic insulator film by Langmuir-Blodgett (LB) deposition for gas sensor fabrication. To increase the reproducibility of film transfer, stearyl alcohol was used as a transfer promoter. The structural properties of the CuPccp layers were optically monitored through attenuated total reflection and polarization-modulated ellipsometry techniques. The average thickness of a single layer of the CuPccp LB film was measured to be 2.5 nm. Despite the role of the transfer promoter, the stability of the layer transfer was not sufficient to ensure homogeneity of the LB film. This was probably due to the presence of aggregates in the molecular structure of the CuPccp LB film. Nevertheless, copper phthalocyanine polymorphism can be greatly suppressed by the LB arrangement, which appears to contribute to the improvement of electrical conductivity. The p-type semiconductor characteristics were confirmed by Hall measurements from the CuPccp LB films.

Ampoule-tube 법을 이용한 P와 As 도핑 p형 ZnO 박막의 광학적 특성 (Optical properties of Phosphorus- and Arsenic-doped p-type ZnO Thin Films with Ampoule-tube Method)

  • 소순진;이은철;유인성;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.97-98
    • /
    • 2005
  • To investigate the ZnO thin films which is interested in the next generation of short wavelength LEDs and Lasers, our ZnO thin films were deposited by RF sputtering system. Phosphorus (P) and arsenic (As) were diffused into about 2.1${\mu}m$ ZnO thin films sputtered by RF magnetron sputtering system mn ampoule tube which was below $5\times10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAs_2$. Those diffusion was perform at 500, 600, and 700$^{\circ}C$ during 3hr. We find the condition of p-type ZnO whose diffusion condition is 700$^{\circ}C$, 3hr Our p-type ZnO thin film has not only very high carrier concentration of above $10^{19}/cm^3$ but also low resistivity of $5\times10^{-3}{\Omega}cm$.

  • PDF

자속커플링 SFCL의 사고전류 변화에 따른 전류제한특성 분석 (Characteristics according to increase of the fault current level of Flux-Coupling Type Superconducting Fault Current Limiter(SFCL))

  • 김용진;한병성;두호익;박충렬;두승규;김민주;하승룡
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.288-288
    • /
    • 2008
  • The flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO thin films. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO thin film was connected with secondary coil in parallel. In a normal condition, the flux generated from a primary coil is cancelled out by its structure and the zero resistance of the YBCO thin films. When a fault occurs, the resistance of the YBCO thin films was generated and the fault current was limited by the SFCL. In this paper, we investigated the fault current limiting characteristics according to fault current level in the flux-coupling type SFCL. The experiment results that the fault current limiting characteristics was improved according to increase of the fault current level.

  • PDF

FTS장치의 자계 분포에 따라 제작된 AZO 박막의 특성 (Characteristic of AZO Thin Film Deposited by Facing Targets Sputtering with Magnetic Field Type)

  • 김상모;신건엽;금민종;김경환
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.30-34
    • /
    • 2016
  • We investigated magnetic field, discharged voltage, and as-deposited film uniformity at facing targets sputtering (FTS) system with magnetic field type: i) concentrated and ii) distributed magnetic field type. And Al doped ZnO (AZO) films were prepared at two magnetic field type such as concentrated magnetic field type and distributed magnetic field type, respectively. Discharge voltage at the distribution type is lower than concentration type due to low magnetic flux (middle magnetic flux: Concentration 1200 G and Distribution 600 G). The films deposited at the distributed magnetic field were more uniform than concentration type. All of prepared AZO films had a resistivity of under $10^{-4}[{\Omega}{\cdot}cm]$ and a transmittance of more than 85 % in the visible range.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • 장진녕;이동혁;소현욱;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF