• Title/Summary/Keyword: thin coating

Search Result 1,325, Processing Time 0.035 seconds

The noble method for superhydrophobic thin film coating

  • Seo, Hyeon-Uk;Kim, Gwang-Dae;Jeong, Myeong-Geun;Kim, Dong-Un;Kim, Myeong-Ju;;Kim, Yeong-Dok;Im, Dong-Chan;Lee, Gyu-Hwan;Eom, Seong-Hyeon;Lee, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.496-496
    • /
    • 2011
  • A very simple and cost-effective method for fabrication of SiOx-incorporated diamond-like carbon (DLC) thin films at a preparation temperature of less than $200^{\circ}C$ was developed. Since DLC coating can be prepared not under vacuum but atmospheric conditions without any carrier gas flow, not only wafers but also powderic substrates can be used for DLC coating. Formation of DLC coating could result in appearance of superhydrophobic behaviors, which was sustained in a wide range of pH (1~14). DLC-coated surfaces selectively interacted with toluene in a toluene/water mixture. These results imply that our preparation method of the DLC coating can be useful in many application fields such as creating self-cleaning surfaces, and water and air purification filters.

  • PDF

Tribological Behavior of Thin PMMA (Poly Methyl Methacrylate) Coating Layers (PMMA(Poly Methyl Methacrylate) 박막 코팅 층의 마찰 및 마멸 거동)

  • Kang S. H;Kim Y. S
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.716-722
    • /
    • 2004
  • Effects of sliding speed, applied load, and thickness of PMMA (Poly Methyl Methacrylate) coating layers on their dry sliding frictional and wear behavior were investigated. Sliding wear tests were carried out using a pin-on-disk wear tester. The PMMA layer was coated on Si wafer by a spin coating process with two different thicknesses, $1.5\mu\textrm{m}$ and $0.8\mu\textrm{m}$. AISI 52100 bearing steel balls were used as a counterpart of the PMMA coating during the wear. Normal applied load and sliding speed were varied. Wear mechanisms of the coatings were investigated by examining worn surfaces using an SEM. Friction coefficient of the coatings decreased with the increase of the applied load. Both adhesion and deformation of the coating determined the coefficient. The thicker PMMA layer with the thickness of $1.5mutextrm{m}$ showed lower friction coefficient than the thinner layer under most test conditions. Effects of sliding speed and applied load on the frictional behavior were varied depending on the thickness of the coating layer.

Mechanical Properties of Chemical Vapor Deposited SiC Coating Layer (화학증착법에 의하여 제조된 탄화규소 코팅층의 기계적 특성)

  • Lee, Hyeon-Keun;Kim, Jong-Ho;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.492-497
    • /
    • 2006
  • SiC coating has been introduced as protective layer in TRISO nuclear fuel particle of High Temperature Gas cooled Reactor (HTGR) due to excellent mechanical stability at high temperature. In order to inhibit the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. ]n present work, thin silicon carbide coating was fabricated using chemical vapor deposition process with different microstructures and thicknesses. Processing condition and surface status of substrate.affect on the microstructure of SiC coating layer. Sphere indentation method on trilayer configuration was conducted to measure the fracture strength of the SiC film. The fracture strength of SiC film with different microstructure and thickness were characterized by trilayer strength measurement method nanoindentation technique was also used to characterize the elastic modulus and th ε hardness of the SiC film. Relationships between microstructure and mechanical properties of CVD SiC thin film were discussed.

Characterization of Yttrium Doped Zinc Oxide Thin Films Fabricated by Spin-coating Method (스핀코팅법에 의해 제조되어진 Yttrium이 도핑된 ZnO 막의 특성)

  • Kim Hyun-Ju;Lee Dong-Yun;Song Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.457-460
    • /
    • 2006
  • Y doped zinc oxide (YZO) thin films were deposited on F doped $SnO_2$ (FTO) glass substrate by sol-gel method using the spin-coating system. A homogeneous and stable solution was prepared by dissolving acetate in the solution added diethanolamine as sol-gel stabilizer. YZO films were obtained after preheated on the hot-plate for 5minute before each coating; the number of coating was 3 times. After the coating of last step, annealing of YZO films performed at $450^{\circ}C$ for 30 minute. In order to confirming of a ultraviolet ray interruption and down-conversion effects, optical properties of YZO films, transmission spectrum and fluorescent spectrum were used. Also, for understanding the obtained results by experiment, the elestronic state of YZO was calculated using the density functional theory The results obtained by experiment were compared with calculated structure. The detail of electronic structure was obtained by the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method. The density of state and energy levels of dopant element were shown and discussed in association with optical properties.

SEM and PV Properties of WC Core Surface with DLC Coating (초경합금(WC) 코어면의 Re-Ir 코팅에 따른 표면 조도 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.828-829
    • /
    • 2010
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, adrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

  • PDF

Thin layer(Overcoat) for TFT-LCD color filter (LCD용 컬러필터 보호막)

  • Kim, Myeong-Koo;Park, Joo-Hyeon;Lim, Young-Taek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.273-273
    • /
    • 2006
  • Over the past years, a large number of acrylate polymers have been developed and the overcoat thin layer containing acrylate polymers have been used for TFT-LCD color filter. As forming thin layer using acrylate polymers, the existing acrylate polymers have some problems such as low hardness by low Tg temperature, coating uniformity and solubility in organic solvent. To solve these problems, we synthesized new polymer(Scheme.), containing olefin monomer, which has high Tg temperature, good coating uniformity and good solubility in organic solvent. The overcoat thin layer containing new polymer resulted in good coating uniformity, stain, spot, scratch, heat resistance, DOP(Degree Of Planarization) on RGB glass, transparency, hardness, adhesion, anti-chemicals(anti-acid, anti-base, anti-organic solvent), insulation and anti-humidity. Scheme. The structure of new polymer X = Olefin monomer contains ketone, ester, hydroxy, ether, halogen, nitrile, alkoxy, phenyl functional group $R_1$ and $R_2$= H or $CH_3$. Ratio=0<[1/(1+m+n)]<0.7,0.1[$\leq$[n/(1+m+n)]<0.5.

  • PDF

Study on Tribological Behavior of Porous Anodic Aluminum Oxide with respect to Surface Coating (다공성 산화알루미늄의 표면코팅에 따른 트라이볼로지적 특성연구)

  • Kim, Young-Jin;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.275-281
    • /
    • 2017
  • In this work, we have fabricated anodic aluminum oxide (AAO) with ordered nanoscale porosity through an anodization process. We deposited gold and nano-organic thin films on the porous AAO surface to protect its structure and reduce friction. We investigated the tribological characteristics of the porous AAO with respect to the protective surface coatings using tribometers. While investigating the frictional characteristics of the samples by applying normal forces of the order of micro-Newton, we observed that AAO without a protective coating exhibits the highest friction coefficient. In the presence of protective surface coatings, the friction coefficient decreases significantly. We applied normal forces of the order of milli-Newton during the tribotests to investigate the wear characteristics of AAO, and observed that AAO without protective surface coatings experiences severe damage due to the brittle nature of the oxide layer. We observed the presence of several pieces of fractured particles in the wear track; these fractured particles lead to an increase in the friction. However, by using surface coatings such as gold thin films and nano-organic thin films, we confirmed that the thin films with nanoscale thickness protect the AAO surface without exhibiting significant wear tracks and maintain a stable friction coefficient for the duration of the tribotests.

Solution-Processed Anti Reflective Transparent Conducting Electrode for Cu(In,Ga)Se2 Thin Film Solar Cells (CIGS 박막태양전지를 위한 반사방지특성을 가진 용액공정 투명전극)

  • Park, Sewoong;Park, Taejun;Lee, Sangyeob;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.131-135
    • /
    • 2020
  • Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters - the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT - to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.

Improvement of Oxidation-resisting Characteristic for SOFC Interconnect Material by Use of Thin Film Coating (박막 코팅을 이용한 SOFC 분리판 재료의 내산화성 향상)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1211-1217
    • /
    • 2006
  • This study is focused on oxidation prevention of STS430, which is generally used as solid oxide fuel cell(SOFC) interconnect at intermediate operating temperatures with oxidation-proof coatings. Inconel, $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ and $La_{0.6}Sr_{0.4}CoO_3(LSCr)$ were chosen as coating materials. Using a radio frequency magnetron sputtering method, each target material was deposited as thin film on STS430 and was analyzed to find out favorable conditions. In this study, LSCr-coated STS430 can reduce electrical resistance to 1/3 level, compared with uncoated STS430. Also, long-term durability test at $700^{\circ}C$ for 1000 hours tells that LSCr thin layer performs an important role to prohibit serious degradations. Superior oxidation-resistant characteristic of LSCr-coated STS430 is attributed to the inhibition of spinel structure formation such as $MnCr_2O_4$.