• Title/Summary/Keyword: thickness-shear

Search Result 1,906, Processing Time 0.027 seconds

Microstructural Evolution of Ultrafine Grained AA1050/AA6061 Complex Aluminum Alloy Sheet with ARB Process (ARB공정에 따른 초미세립 AA1050/AA6061 복합알루미늄 합금 판재의 미세조직 발달)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • The microstructural evolution of AA1050/AA6061 complex aluminum alloy, which is fabricated using an accumulative roll-bonding (ARB) process, with the proceeding of ARB, was investigated by electron back scatter diffraction (EBSD) analysis. The specimen after one cycle exhibited a deformed structure in which the grains were elongated to the rolling direction for all regions in the thickness direction. With the proceeding of the ARB, the grain became finer; the average grain size of the as received material was $45{\mu}m$; however, it became $6.3{\mu}m$ after one cycle, $1.5{\mu}m$ after three cycles, and $0.95{\mu}m$ after five cycles. The deviation of the grain size distribution of the ARB processed specimens decreased with increasing number of ARB cycles. The volume fraction of the high angle grain boundary also increased with the number of ARB cycles; it was 43.7% after one cycle, 62.7% after three cycles, and 65.6% after five cycles. On the other hand, the texture development was different depending on the regions and the materials. A shear texture component {001}<110> mainly developed in the surface region, while the rolling texture components {011}<211> and {112}<111> developed in the other regions. The difference of the texture between AA1050 and AA6061 was most obvious in the surface region; {001}<110> component mainly developed in AA1050 and {111}<110> component in AA6061.

Study on the Effective Method of Fire Protection Technology in Railway Tunnel Fire (철도터널 내화성능 기술개발을 위한 내화성능 확보방안에 관한 연구)

  • Park, Kyung-Hoon;Kim, Heung-Yeol;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.86-91
    • /
    • 2010
  • In event of a tunnel fire, all kinds of equipment can be destroyed in high temperature that can exceed $1300^{\circ}C$, fatal structural demage can be caused by spalling of concrete structural elements. To make matters worse, there is a high possibility of the secondary damage which can lead to the collapse of the shear resisting structure. Accordingly, it is time that we developed the technology to counter fires in connection with the fire-resistant design of a tunnel structure. To secure the reliability of the fire-resistance performance of a tunnel structure, it is necessary to assess the fire's behavior on every structural element exposed to the fire as well as to calculate the tunnel fire intensity and the quantity of heat released. In this study, we drew out the fire damage range of each structural element of a tunnel and the minimum thickness of concrete cover for each fire-resistant material through some actual experiments of fire behavior on the structural elements of a tunnel.

Influence of Ag Precoating of $Bi_{2212}$ Superconductor-In Base Solder Soldering ($Bi_{2212}$ 초전도체와 In 계열 solder의 soldering에서 Ag precoating의 영향)

  • Jang Ji-Hoon;Kim Sang-Hyun;Shin Seung-Yong;Lee Yong-Chul;Kim Chan-Joong;Hyun Ok-Bae;Park Hae-Woong
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • In this study, In-base solder was applied to the interface between $Bi_2Sr_2Ca_1Cu_2O_x(Bi_{2212})$ superconductor and Cu-Ni shunt metal at the temperature lower than $150^{\circ}C$. Most of the cases, $Bi_{2212}$ superconductor was precoated with Ag by electroplating in order to improve the contact properties of the solder layer. When the superconductor was directly soldered on to the superconductor, the solder was easily separated without external force. The shear strength of the contact between superconductor and shunt metal increased from 69.2 kgf to 74.4 kgf and 80.1 kgf, as the current density of the Ag electroplating was changed from 63 mA to 96 mA and 126 mA, respectively. The contact strength also increased to 49.9 kgf and 69.2 kgf when thickness of the electroplated Ag layer increased to $5{\mu}m$ and $10{\mu}m$, reapectively.

Seismic Performance Evaluation of Reinforced Concrete Bridge Columns under Varying Axial Force (변동 축하중을 받는 철근콘크리트 교각의 내진성능평가)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.67-73
    • /
    • 2003
  • The purpose of this study is to evaluate seismic performance of reinforced concrete bridge columns under varying axial force. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis for reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for seismic performance evaluation of reinforced concrete bridge columns under varying axial force is verified by comparison with reliable experimental results.

Inelastic Behavior and Ductility Capacity of Reinforced Concrete Frame Subjected In Cyclic Lateral Load (반복 휭하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력)

  • 김태훈;김운학;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.467-473
    • /
    • 2002
  • The purpose of this study is to investigate the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load and to provide result for developing improved seismic design criteria. A computer program named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The strength increase of concrete due to the lateral confining reinforcement has been taken into account to model the confined concrete. In boundary plane at which each member with different thickness is connected local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. The proposed numerical method for the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load is verified by comparison with reliable experimental results.

Heating Behavior and Adhesion Property of Epoxy Adhesive with Nano and Micro Sized Fe3O4 Particles (Nano 및 Micro 크기의 Fe3O4 분말이 첨가된 열경화성 에폭시 접착제의 유도가열 및 접착 특성)

  • Hwang, Ji-Won;Im, Tae-Gyu;Choi, Seung-Yong;Lee, Nam-Kyu;Shon, Min-Young
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.55-60
    • /
    • 2020
  • A study on the heating behavior and adhesion property of structural epoxy adhesive through induction heating have been conducted. An adhesive for induction heating was manufactured through mixing with nano and micro sized Fe3O4. From the results, it was observed that induction heating is less affected by adherend (GFRP) thickness than oven heating. The heating rate of Fe3O4 embedded epoxy adhesive using induction heating much higher than that of oven curing process and it is more appreciable when the contents of Fe3O4 increased. Furthermore, adhesion strength increased with increase of Fe3O4 particle contents.

Numerical evaluation of deformation capacity of laced steel-concrete composite beams under monotonic loading

  • Thirumalaiselvi, A.;Anandavalli, N.;Rajasankar, J.;Iyer, Nagesh R.
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.167-184
    • /
    • 2016
  • This paper presents the details of Finite Element (FE) analysis carried out to determine the limiting deformation capacity and failure mode of Laced Steel-Concrete Composite (LSCC) beam, which was proposed and experimentally studied by the authors earlier (Anandavalli et al. 2012). The present study attains significance due to the fact that LSCC beam is found to possess very high deformation capacity at which range, the conventional laboratory experiments are not capable to perform. FE model combining solid, shell and link elements is adopted for modeling the beam geometry and compatible nonlinear material models are employed in the analysis. Besides these, an interface model is also included to appropriately account for the interaction between concrete and steel elements. As the study aims to quantify the limiting deformation capacity and failure mode of the beam, a suitable damage model is made use of in the analysis. The FE model and results of nonlinear static analysis are validated by comparing with the load-deformation response available from experiment. After validation, the analysis is continued to establish the limiting deformation capacity of the beam, which is assumed to synchronise with tensile strain in bottom cover plate reaching the corresponding ultimate value. The results so found indicate about $20^{\circ}$ support rotation for LSCC beam with $45^{\circ}$ lacing. Results of parametric study indicate that the limiting capacity of the LSCC beam is more influenced by the lacing angle and thickness of the cover plate.

Fabrication of a Pressure Difference Type Gas Flow Sensor using ICP-RIE Technology (ICP-RIE 기술을 이용한 차압형 가스유량센서 제작)

  • Lee, Young-Tae;Ahn, Kang-Ho;Kwon, Yong-Taek;Takao, Hidekuni;Ishida, Makoto
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we fabricated pressure difference type gas flow sensor using only dry etching technology by ICP-RIE(inductive coupled plasma reactive ion etching). The sensor's structure consists of a common shear stress type piezoresistive pressure sensor with an orifice fabricated in the middle of the sensor diaphragm. Generally, structure like diaphragm is fabricated by wet etching technology using TMAH, but we fabricated diaphragm by only dry etching using ICP-RIE. To equalize the thickness of diaphragm we applied insulator($SiO_2$) layer of SOI(Si/$SiO_2$/Si-sub) wafer as delay layer of dry etching. Size of fabricated diaphragm is $1000{\times}1000{\times}7\;{\mu}m^3$ and overall chip $3000{\times}3000{\times}7\;{\mu}m^3$. We measured the variation of output voltage toward the change of gas pressure to analyze characteristics of the fabricated sensor. Sensitivity of fabricated sensor was relatively high as about 1.5mV/V kPa at 1kPa full-scale. Nonlinearity was below 0.5%F.S. Over-pressure range of the fabricated sensor is 100kPa or more.

  • PDF

Nonlinear Analysis of Reinforced and Prestressed Concrete Slabs (철근 및 프리스트레스트 콘크리트 슬래브의 비선형 해석)

  • 최정호;김운학;신현목
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.223-234
    • /
    • 1996
  • The purpose of this paper is to present an analysis method by using the finite element method which can exactly analyze load-deflection relationships, crack propagations. and stresses and strains of reinforcements, tendons, and concrete in behaviors of elastic. inelastic and ultimate ranges of reinforced and prestressed concrete slabs under monotonically increasing loads. For t h i s purpose, the m a t e r i a l and geometric nonlinearities are taken into account in this study. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearities of the structure. The material nonlinearities are taken into account by comprising the tension, compression. and shear models of cracked concrete and models for reinforcements and tendons in the concrete : and also a so-called smeared crack model is incorporated. The reinforcements and t,endons are assumed to be in a uniaxial stress state and are modelled as smeared layers of equivalent thickness. For the verification of application and validity of the method proposed in this paper, several numerical examples are analyzcd and compared with experimental results. As a result, this method can successfully predict the nonlinear and inelastic behaviors throughout the fracture of reinforced and prestressed concrete slabs.

Influence of Construction Combination of Rib Stitch and Milan Stitch on Objective Hand Values of Weft Knit (위편성물에서 Rib stitch와 Milan stitch의 편성결합이 태에 미치는 영향)

  • Kwon, Jin;Kwon, Myoung-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.1 s.160
    • /
    • pp.68-76
    • /
    • 2007
  • The purpose of this study is to investigate change of mechanical and physical properties, shape behavior and hand value in weft knit when rib stitch and milan stitch are combined. The knit stitches used in this study are plain stitch, half milan rib stitch, milan rib stitch, $2{\times}1$ rib stitch, $2{\times}1$ half milan rib stitch and $2{\times}1$ milan rib stitch. We analyzed physical and mechanical properties(tensile, bending, shear, compression, surface properties, thickness and weight) of the knit stitches and calculated their primary hand value and total hand value through translational formulas using the KES(Kawabata Evaluation System). The results are as follows; In evaluation of mechanical properties and hand values of knit stitches, plain stitch had the highest flexibility and the lowest T.H.V. as women's winter knit wear. Since $2{\times}1$ rib stitch had too high elongation in one direction, although it had the highest T.H.V, it needs to be careful when plain stitch and $2{\times}1$ rib stitch are applied for women's winter knit wear. Since Milan rib stitch and $2{\times}1$ milan rib stitch had high T.H.V. similarly, it is considered that they are suitable for women's winter knit wear. Specially, when Milan stitch is combined with $2{\times}1$ rib stitch, its shape stability and fullness are contained and flexibility is added on it. Therefore, $2{\times}1$ milan rib stitch can be also applied for women's winter knit wear.