• Title/Summary/Keyword: thickness ratio

Search Result 3,825, Processing Time 0.027 seconds

Studies on the Influence of Sample thickness, Load Increment Ratio and Load Increment Duration on Consolidation Characteristics. (시료의 두께, 하중증가율 밀 재하시간이 압밀특성에 미치는 영향)

  • 류능환;강예묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.3
    • /
    • pp.4750-4770
    • /
    • 1978
  • Under the various variations of the sample thickness, the load increment ratio and the load increment duration, this consolidation test of the clay in the Asan Bay was tried for the comparison with the standard consolidation test. The results gained are as follows; 1. The void ratio variations of the leached-clay samples were increasingly high, according as the sample thickness thinned and the load increment duration and the laod increment ratio increased. 2. The coefficient of consolidation were increased with the increment of the sample thickness, of the load increment ratio and of the load increment duration. Near the pre-consolidation load, the coefficient of secondary consolidation had the maximum value and lessened with the increment of the sample thicknss, and of the load increment duration 3. The value of the pre-consolidation load increased in proportion to the increment of the sample thickness and the decrease of the load increment ratio and the load increment duration. 4. The compression indices increased as the increment of load increased and decreased as the sample thickness increased. 5. The initial compression ratio increased as the sample thickness, the load increment ratio and the load increment duration decreased. The ratio of primary compression to the secondary decreased with the increment of the sample thickness and of the load increment ratio. 6. The time at the completion of psimary consolidation increased with the increment of the sample thickness and of the consolidation load, and with the decrease of the load increment ratio. 7. The compression indicses increaed as the sample thickness lessened and decreased as the load increment ratio increased. The coefficient of consolidation increased according as the sample thickness, the load increment ratio and the load increment duration went up. The settlement at the construction site should be calculated highly in proportion as the sample thickness lessened and the load increment ratio increased. The consolidation ratio is thought to be accelerated if the sample thickness and the load increment ratio becomes higher and the load increment duration longer.

  • PDF

Effect of Solvent Mixture Ratio on Rheology Property of Slurry and Thickness Control of Ceramic Green Sheets (유기 용매 혼합비에 따른 슬러리의 유동 특성과 세라믹 그린 쉬트의 두께 제어)

  • Kim, Jun-Young;Kim, Seung-Taek;Park, Jong-Chul;Yoo, Myong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.236-241
    • /
    • 2008
  • The effect of organic solvent mixture ratio on the rheology property of slurry and thickness control of ceramic green sheet was investigated. For selecting a suitable dispersant multiple light scattering method was used to evaluate the particle migration velocity and variation of clarification layer thickness. Using the selected dispersant the dispersion property of solution according to solvent mixture ratio was investigated. Binder and plasticizers were added to formulate slurries and their viscosity was evaluated according to solvent mixture ratio. Ceramic green sheets with average thickness of 30, 50 urn were fabricated via tape casting and their thickness tolerances measured. As a result according to solvent mixture ratio the solution and slurry properties varied and for the mixture ratio of ethanol/toluene of 80/20 the ceramic green sheet with the lowest thickness tolerance was obtained.

Effect of thickness on properties of ZnO film prepared by direct current reactive magnetron sputtering method

  • Baek, C.S.;Kim, D.H.;Kim, H.H.;Lim, K.J.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.403-406
    • /
    • 2012
  • Effect of thickness on ZnO properties including the compositional ratio and crystallinity has been systematically investigated using a variety of characterization tools of x-ray diffraction, field emission scanning electron microscopy, x-ray fluorescence and x-ray photoelectron spectroscopy. Interestingly, it was observed that ZnO films below 80 nm in thickness were in oxygen deficiency, while the oxygen ratio was increased in the films above the thickness, although the compositional ratio of ZnO film was not linearly varied with increasing film thickness. Also, ZnO crystallinity, which is characterized by (002) diffraction pattern, was clearly improved with increasing film thickness. The properties of ZnO film with different sputtering time and the nature of direct current reactive sputtering process were discussed in terms of compositional ratio, especially oxygen ratio in ZnO film.

Stress Intensity Factors of Combined Mode(Mode I/II) Crack in a Variable Thickness Plate (두께가 변화하는 부재 내의 혼합모드(모드 I/II) 균열의 응력확대계수)

  • 조명래;양원호;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1875-1882
    • /
    • 1993
  • Variable thickness plates are commonly used as structural members in the majority of industrial sectors. Previous fracture mechanics researches on variable thickness plates were limited to mode I loading cases. In practice, however, cracks are usually located inclined to the loading direction. In this respect, combined mode(mode I/II) stress intensity factors $K_{I}$ and $K_{II}$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a slant edge crack were chosen. The parameters used in this study were dimensionless crack $length{\lambda}$, slant $angle{\alpha}$, thickness $ratio{\beta}$ and width ratio{\omega}$. Stress intensity factors were calculated by crack opening displacement(COD) and crack sliding displacement(CSD)method proposed by Ingraffea and Manu.

Combined Mode I / III Stress Intensity Factor Analysis of a Crack in a Variable Thickness Plate (두께가 변화하는 부재 내의 혼합모드 I / III 균열의 응력확대 계수해석 - 3차원 유한요소해석 중심으로 -)

  • 양원호;최용식;조명래
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.112-120
    • /
    • 1993
  • Variable thickness plates are commonly encountered in the majority of mechanical/structural components of industrial applications. And, as a result of the unsymmetry of the structure or the load and the anisoptropy of the materials, the cracks in engineering structures are generally subjected to combined stresses. In spite of considerable practical interest, however, a few fracture mechanics study on combined mode crack in a variable thickness plate have carried out. In this respect, combined mode 1/3 stress intensity factors $K_{1}$ and $K_{3}$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a central slant crack were chosen. the parameters used in this study were dimensionless crack length .lambda. crack slant angle .alpha, thickness ratio .betha. and width ratio .omega. Stress intensity factors were calculated by crack opening displacement(COD) and crack tearing displacement(CTD) method proposed by Ingraffea and Manu. The effect of thickness ratio .betha. on $K_{1}$ is relatively great in comparison to $K_{3}$.

  • PDF

Comparison of the Ratio of Thicknesses of the Rhomboid Major and Middle Trapezius Muscles While Performing Scapular Retraction Exercises (어깨뼈 뒤 당김 운동 방법에 따른 큰마름근과 중간등세모근의 근두께비의 비교)

  • Park, Heon-mi;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.29 no.2
    • /
    • pp.131-139
    • /
    • 2022
  • Background: Shoulder impingement syndrome, a major cause of shoulder pain, involves weakness of the scapular retractor muscles. The major scapular retractor muscles are the middle trapezius and rhomboid major muscles; however, the latter is excluded in most studies. Objects: We aimed to measure the thickness of the middle trapezius and rhomboid major muscles using an ultrasonic diagnostic imaging system while performing four different shoulder retraction exercises and comparing the thicknesses and ratio of the thicknesses of these muscles. Methods: The thickness of the middle trapezius and rhomboid major muscles was measured in 24 healthy adults using ultrasound. Muscle thickness was measured three times in the Reference posture and four times while performing four different exercises that involved scapular retraction. The averages and standard deviations of the measured muscle thicknesses were obtained and compared. The ratio of muscle thickness and rate of changes in muscle thickness between the reference posture and the four exercises were compared. Results: For both, male (n = 10) and female (n = 14), there was a significant difference in the thickness of the middle trapezius muscle between the reference posture and the four exercises (p < 0.05) and in the thickness of the middle trapezius and rhomboid major muscles between male and female (p < 0.05); however, there was no significant difference in the ratio of the thicknesses of these muscles. Although a significant difference in the rate of change in muscle thickness during the four exercises was noted, there was no significant difference in the ratio of change in muscle thickness. Conclusion: This study demonstrates the ratio of the thicknesses of the middle trapezius and rhomboid major muscles and the rate of change in their thickness during exercises involving scapular retraction in healthy people in their 20s-30s.

Correlation between the Asymmetric Ratio of Occlusal Force and the Thickness of the Middle Scalene Muscle (교합력 비대칭률과 중간 목갈비근 근육 두께의 비대칭률 상관관계)

  • Chae, Jung-Byung;Cho, Hyun-Rae
    • PNF and Movement
    • /
    • v.14 no.1
    • /
    • pp.53-57
    • /
    • 2016
  • Purpose: This study aimed to examine the correlation between the asymmetric ratio of occlusal force of the temporomandibular joint and the thickness of the middle scalene muscle. Methods: The study measured the occlusal force of the right and left temporomandibular joints in 30 subjects (12 males and 18 females). Pearson's correlation analysis was performed to examine the effect of occlusal force on the asymmetric ratio of the thickness of their middle scalene muscles by measuring the force using ultrasound after the break. Results: The correlation between the asymmetric ratio of occlusal force and muscle thickness is 0.41, according to Pearson's correlation coefficient. Therefore, the result shows a moderate correlation with the asymmetric ratio of the temporomandibular joint depending on differences in the thickness of the middle scalene muscle. Conclusion: Based on the above results, the asymmetric ratio of occlusal force was found to correlate with the thickness of the middle scalene muscle. Thus, therapeutic intervention is required for the middle scalene muscle in the case of temporomandibular joint disorder.

A study on tissue compensator thickness ratio and an application for 4MV X-rays (4MV X-선을 이용한 조직보상체 두께비 연구 및 응용)

  • Kim Young-Bum;Jung Hee-Young;Kweon Young-Ho;Kim You-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.55-61
    • /
    • 1996
  • A radiation beam incident on irregular or sloping surface produces an inhomogeneity of absorbed dose. The use of a tissue compensator can partially correct this dose inhomogeneity. The tissue compensator should be made based on experimentally measured thickness ratio. The thickness ratio depends on beam energy, distance from the tissue compensator to the surface of patient, field size, treatment depth, tissue deficit and other factors. In this study, the thickness ratio was measured for various field size of $5cm{\times}5cm,\;10cm{\times}10cm,\;15cm{\times}15cm,\;20cm{\times}20cm$ for 4MV X-ray beams. The distance to the compensator from the X-ray target was fixed, 49cm, and measurement depth was 3, 5, 7, 9 cm. For each measurement depth, the tissue deficit was changed from 0 to(measurement depth-1)cm by 1cm increment. As a result, thickness ratio was decreased according to field size and tissue deficit was increased. Use of a representative thickness ratio for tissue compensator, there was $10\%$ difference of absorbed dose but use of a experimentally measured thickness ratio for tissue compensator, there was $2\%$ difference of absorbed dose. Therefore, it can be concluded that the tissue compensator made by experimentally measured thickness ratio can produce good distribution with acceptable inhomogeneity and such tissue compensator can be effectively applied to clinical radiotherapy.

  • PDF

Load Bearing Capacity of Welded Joints between Dissimilar Pipelines with Unequal Wall Thickness (두께가 다른 이종배관 용접부 면삭 각도 변화에 따른 하중지지능력 평가)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.961-970
    • /
    • 2012
  • The behavior of the load bearing capacity of a pipeline with unequal wall thickness was evaluated using finite element analyses. Pipelines with a wall thickness ratio of 1.22-1.89 were adopted to investigate plastic collapse under tensile, internal pressure, or bending stress. A parametric study showed that the tensile strength and moment of a pipeline with a wall thickness ratio less than 1.5 were not influenced by the wall thickness ratio and taper angle; however, those of a pipeline with a wall thickness ratio more than 1.5 decreased considerably at a low taper angle. The failure pressure of a pipeline with unequal wall thickness was not influenced by the wall thickness ratio and taper angle.

A Study on the Forming Characteristics of Forward and Backward Extrusions (전.후방 캔 압출공정의 성형특성 연구)

  • Shim Ji-Hun;Choi Ho-Joon;Ok Jeong-Han;Ham Byoung-Soo;Hwang Beong-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.86-92
    • /
    • 2005
  • In this paper a forward-backward can extrusion process are analyzed by using rigid-plastic FEM simulation. FEM simulation is conducted to investigate forming characteristics such as deformation modes fur different process parameters. Design parameters such as thickness ratio, punch angle, friction factor and diameter ratio are selected to study the effect of them on the pattern of material flow. The analysis is focused mainly on the influences of the design factors on deformation pattern in terms of forming load, extruded length ratio and volume ratio. It is known for the simulation that the forming load, the length ratio and the volume ratio increase as the thickness ratio (TR), the wall thickness in forward direction to that in backward direction, decreases. The various punch angles have slight influence on the forming load. length ratio and volume ratio. However friction factor have little effect on the forming characteristics such as the forming load, volume ratio and so on. In addition the forming load increases as diameter ratio (DR), the outer diameter of a can in forward direction to that in backward direction, increases. Furthermore the extruded length ratio is lowest with a certain value of DR=0.85 among diameter ratios. Pressure distribution exerted on the die-material interface is illustrated schematically.