• Title/Summary/Keyword: thick composite structure

Search Result 79, Processing Time 0.025 seconds

Free and forced analysis of perforated beams

  • Abdelrahman, Alaa A.;Eltaher, Mohamed A.;Kabeel, Abdallah M.;Abdraboh, Azza M.;Hendi, Asmaa A.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.489-502
    • /
    • 2019
  • This article presents a unified mathematical model to investigate free and forced vibration responses of perforated thin and thick beams. Analytical models of the equivalent geometrical and material characteristics for regularly squared perforated beam are developed. Because of the shear deformation regime increasing in perforated structures, the investigation of dynamical behaviors of these structures becomes more complicated and effects of rotary inertia and shear deformation should be considered. So, both Euler-Bernoulli and Timoshenko beam theories are proposed for thin and short (thick) beams, respectively. Mathematical closed forms for the eigenvalues and the corresponding eigenvectors as well as the forced vibration time response are derived. The validity of the developed analytical procedure is verified by comparing the obtained results with both analytical and numerical analyses and good agreement is detected. Numerical studies are presented to illustrate effects of beam slenderness ratio, filling ratio, as well as the number of holes on the dynamic behavior of perforated beams. The obtained results and concluding remarks are helpful in mechanical design and industrial applications of large devices and small systems (MEMS) based on perforated structure.

Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory

  • Taherifar, Reza;Zareei, Seyed Alireza;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.99-115
    • /
    • 2020
  • This article deals with the dynamic analysis in pad concrete foundation containing Silica nanoparticles (SiO2) subject to seismic load. In order to control the foundation smartly, a piezoelectric layer covered the foundation. The weight of the building by a column on the foundation is assumed with an external force in the middle of the structure. The foundation is located in soil medium which is modeled by spring elements. The Mori-Tanaka law is utilized for calculating the equivalent mechanical characteristics of the concrete foundation. The Kevin-Voigt model is adopted to take into account the structural damping. The concrete structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The differential quadrature method (DQM) and the Newmark method are applied to obtain the seismic response. The effects of the applied voltage to the smart layer, agglomeration and volume percent of SiO2 nanoparticles, damping of the structure, geometrical parameters and soil medium of the structure are assessed on the dynamic response. It has been demonstrated by the numerical results that by applying a negative voltage, the dynamic deflection is reduced significantly. Moreover, silica nanoparticles reduce the dynamic deflection of the concrete foundation.

A Study on the Radiopacity of Cavity Lining Materials for Posterior Composite Resin Restoration (구치부 복합레진 수복을 위한 와동 이장용 재료의 방사선투과성에 관한 연구)

  • Moon Joo-Hoon;Choi Eui-Rwan
    • Imaging Science in Dentistry
    • /
    • v.30 no.4
    • /
    • pp.243-248
    • /
    • 2000
  • Purpose: The aim of this study was to determine the relative radiopacities of cavity lining materials (Resin-modified Glass Ionomer cement, Compomer and Plowable resin) for posterior composite resin restoration. Material & Methods: Resin-modified glass ionomer cement (Fuji II LC, Vitrebond/sup TM/), Compomers (Dyract /sup (R)/ Compoglass, F2,000, Dyract/sup (R)/ flow Compoglass Flow) and Flowable resins (Tetric/sup (R)/ flow, Aeliteflo/sup TM/ Revolution/sup TM/) were used. Five specimens of 5 mm in diameter and 2 mm thick were fabricated with each material. Human molars were horizontally sectioned 2 mm thick to include both enamel and dentin. The radiopacities of enamel, dentin, cavity lining materials, aluminum step wedge were obtainded from conventional radiograph and NIH image program. Results: All the tested lining materials showed levels of radiopacity the same as or greater than that of dentin. All compomer tested (Dyract, Compoglass, F2,000, Dyract flow, Compoglass Flow) and Vitrebond/sup TM/, Tetric/sup (R)/ flow were more radiopaque than enamel. The radiopacities of Fuji II LC and Revolution/sup TM/ were between enamel and dentin and resin-modified glass ionomer cement, Compomer and Tetric/sup (R)/ flow were greater than those of Revolution/sup TM/, Aeliteflo/sup TM/ or dentin. The level of radiopacity of the tested materials was variable; those with low radiopacity should be avoided in class II restorations, where a clear determination of recurrent caries by the examining clinician could be compromised. Conclusion: Clinician should be able to distinguish these cavity lining materials radiographically from recurrent decay, voids, gaps, or other defects that lead to clinical failure. Utilization of materials ranked more radiopaque than enamel would enable clinicians to distinguish the lining material from tooth structure.

  • PDF

Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly part I: Large-scale model test and finite element model validation

  • Li, Z.C.;Yang, Y.H.;Dong, Z.F.;Huang, T.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2682-2695
    • /
    • 2021
  • This paper aims to evaluate the structural dynamic responses and damage/failure of the nuclear fuel reprocessing plant under the free drop impact of spent fuel cask (SFC) and fuel assembly (FA) during the on-site transportation. At the present Part I of this paper, the large-scale SFC model free drop test and the corresponding numerical simulations are performed. Firstly, a composite target which is composed of the protective structure, i.e., a thin RC plate (representing the inverted U-shaped slab in the loading shaft) and/or an autoclaved aerated concrete (AAC) blocks sacrificial layer, as well as a thick RC plate (representing the bottom slab in the loading shaft) is designed and fabricated. Then, based on the large dropping tower, the free drop test of large-scale SFC model with the mass of 3 t is carried out from the height of 7 m-11 m. It indicates that the bottom slab in the loading shaft could not resist the free drop impact of SFC. The composite protective structure can effectively reduce the damage and vibrations of the bottom slab, and the inverted U-shaped slab could relieve the damage of the AAC blocks layer dramatically. Furthermore, based on the finite element (FE) program LS-DYNA, the corresponding refined numerical simulations are performed. By comparing the experimental and numerical damage and vibration accelerations of the composite structures, the present adopted numerical algorithms, constitutive models and parameters are validated, which will be applied in the further assessment of drop impact effects of full-scale SFC and FA on prototype nuclear fuel reprocessing plant in the next Part II of this paper.

EFFECT OF PH AND STORAGE TIME ON THE ELUTION OF RESIDUAL MONOMERS FROM POLYMERIZED COMPOSITE RESINS (산도변화와 침지시간이 광중합 복합레진의 잔류단량체 유출에 미치는 영향)

  • Jeon, Cheol-Min;Yoo, Hyun-Mi;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.249-266
    • /
    • 2004
  • The purpose of this study was to determine whether pH and time has any influence on the degradation behavior of composite restoration by analyzing the leached monomers of dental composites qualitatively and quantitatively after storage in acetate buffer solution as a function of time using high performance liquid chromatography (HPLC) / mass spectrometer. Materials and Methods:Three commercial composite restorative resin materials (Z-250, Heliomolar and Aeliteflo) with different matrix structure and filler composition were studied. Thirty specimens (7mm $diameter{\times}2mm$ thick) of each material were prepared. The cured materials were stored in acetate buffer solution at different pH (4, 7) for 1, 7 and 45days. As a reference, samples of unpolymerized composite materials of each product were treated with methanol (10mg/ml). Identification of the various compounds was achieved by comparison of their mass spectra with those of reference compound, with literature data. and by their fragmentation patterns. Data were analysed statistically using ANOVA and Duncan's test. Results:1. Amounts of leached TEGDMA in Aeliteflo were significantly larger than those of UDMA in Z-250 and Heliomolar at experimental conditions of different storage time and pH variation (p<0.001). 2. As to comparison of the amounts of leached monomers per sorage time, amounts of leached TEGDMA in Aeliteflo and UDMA in Z-250 and Heliomolar were increased in the pH 4 solution more significantly than in the pH 7 solution after 1day, 7days and 45days, respectively (p<0.001). 3. In total amounts of all the leached monomers with storage times, the overall amounts of pH 4 extracts were larger than those of pH 7 extracts for all resin groups, but there was no significant difference (p>0.05).

Study on the Epoxy/BaTiO$_3$Embedded Capacitor Films for PWB Applications (인쇄회로기판 용 Epoxy/BaTiO$_3$내장형 커패시터 필름에 관한 연구)

  • 조성동;이주연;백경욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.59-65
    • /
    • 2001
  • Epoxy/$BaTiO_3$composite capacitor films with excellent stability at room temperature, uniform thickness, and electrical properties over a large area ware successfully fabricated. The composite capacitor films with good film formation capability and easy process ability were made from epoxy resin developed for ACF as a matrix and two kinds of $BaTiO_3$powders as fillers to increase the dielectric constant of the composite film. The crystal structure of the powders and its effects on dielectric constant of the films were investigated by X-ray diffraction (XRD). And the optimum amount of dispersant, phosphate ester, was determined by viscosity measurement of suspension. DSC and dielectric property tests were conducted to decide the right curing temperature and the optimum amount of the curing agent. As a result, the capacitors of 7 $\mu \textrm{m}$ thick film with 10 nF/$\textrm{cm}^2$ and low leakage current were successfully demonstrated.

  • PDF

Thermal Stress Analysis of Composite Beam through Dimension Reduction and Recovery Relation (차원축소와 복원관계를 통한 복합재료 보의 열응력 해석)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.381-387
    • /
    • 2017
  • Fiber-reinforced composites not only have a direction of thermal expansion coefficient, but also inevitably suffer thermal stress effects due to the difference between the manufacturing process temperature and the actual use temperature. The damage caused by thermal stress is more prominent in the case of thick composite laminates, which are increasingly applied in the aerospace industry, and have a great influence on the mechanical function and fracture strength of the laminates. In this study, the dimensional reduction and thermal stress recovery theory of composite beam structure having high slenderness ratio is introduced and show the efficiency and accuracy of the thermal stress comparison results between the 3-D finite element model and the dimension reduction beam model. Efficient recovery analysis study will be introduced by reconstructing the thermal stress of the composite beam section applied to the thermal environment by constructing the dimensional reduction modeling and recovery relations.

Direct Observation of Heterogeneous Nucleation in Al-Si-Cu-Mg Alloy Using Transmission Electron Microscopy and Three-dimensional Atom Probe Tomography

  • Hwang, Jun Yeon;Banerjee, Rajarshi;Diercks, David R.;Kaufman, Michael J.
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.122-126
    • /
    • 2013
  • The heterogeneous nucleation of the ${\Theta}^{\prime}$ phase on nanoscale precipitates has been investigated using a combination of three-dimensional atom probe tomography and high-resolution transmission electron microscopy. Two types of ${\Theta}^{\prime}$ phases were observed, namely small (~2 nm thick) cylindrical precipitates and larger (~100 nm) globular precipitates and both appear to be heterogeneously nucleated on the nanoscale precipitates. The composition and crystal structure of precipitates were directly analyzed by combination of two advanced characterization techniques.

Fabrication of Core-Shell Structure of Ni/Au Layer on PMMA Micro-Ball for Flexible Electronics

  • Hong, Sung-Jei;Jeong, Gyu-Wan;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.140-144
    • /
    • 2016
  • In this paper, core-shell structure of nickel/gold (Ni/Au) conductive layer on poly-methyl-methacrylate (PMMA) micro-ball was fabricated and its conduction property was investigated. Firstly, PMMA micro-ball was synthesized by using dispersion polymerization method. Size of the ball was $2.8{\mu}m$ within ${\pm}7%$ deviation, and appropriate elastic deformation of the PMMA micro-ball ranging from 31 to 39% was achieved under 3 kg pressure. Also, 200 nm thick Ni/Au conductive layer was fabricated on the PMMA micro-ball by uniformly depositing with electroless-plating. Adhesion of the conductive layer was optimized with help of surface pre-treatment, and the layer adhered without peeling-off despite of thermal expansion by collision with accelerated electrons. Composite paste containing core-shell structured particles well cured at low temperature of $130^{\circ}C$ while pressing the test chip onto the substrate to make electrical contact, and electrical resistance of the conductive layer showed stable behavior of about $6.0{\Omega}$. Thus, it was known that core-shell structured particle of the Ni/Au conductive layer on PMMA micro-ball was feasible to flexible electronics.

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J.;Hatami, Shahabeddin;Gholami, Mohammad
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.519-529
    • /
    • 2022
  • Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.