• Title/Summary/Keyword: thick coating

Search Result 321, Processing Time 0.027 seconds

Development of chemical conversion coating process for Mg-Al alloy and its anti-corrosion property (마그네슘-알루미늄 합금의 화성처리 공정 개발과 그 내식성 평가)

  • Kim, Seong-Jong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.265-266
    • /
    • 2006
  • The chemical conversion coating formed on magnesium alloy investigated for low cost and harmless in environment by using the colloidal silica as the main component. The film formed in 298 K is thick, the film, which was thought combination of Si-O, was formed. The film formed in 313 K is thinner than that in 298 K. The quantity of film formed at high temperature such as 333 K and 353 K is smaller than dissolved quantity. At the anodic polarization experiment, corrosion resistance in sealing by hot water after chemical conversion treatment in basic solution condition get worse than that in comparison with basic solution condition. In salt spray test, the ratio of black rust on specimen that did not conducted chemical conversion treatment was five times or more compared with those of chemical conversion treated specimen. The film thickness of chemical conversion coating produced by alkali treatment process is thinner than in comparison with that of specimen produced in basic chemical conversion treatment solution condition. It is thought, however, that it showed good corrosion resistance during salt spray test because the area of microcracks is small.

  • PDF

The High Temperature Oxidation Behavior of Diffusion Aluminized MarM247 Superalloy

  • Matsunaga, Yasuo;Matsuoka, Akira;Nakagawa, Kiyokazu
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • The MarM247 based superalloy (8wt.%Cr- 9wt.%Co- 3wt.%Ta- 1.5wt.%Hf- 5.6%wt.Al- 9.5wt.%W- Bal. Ni) specimens were diffusion aluminized by for types of pack cementation methods, and their coating structure and their high temperature oxidation resistance were investigated. The coated specimens treated at 973K in high aluminum concentration pack had a coating layer containing large hafunium rich precipitates, which were originally included in substrate alloy. After the high temperature oxidation test in air containing 30 vol.% $H_2O$ at 1273K ~ 323K, the deep localized corrosion which reached to the substrate were observed along with these hafnium rich precipitates. On the other hand, the coated specimens treated at 1323K using low aluminum concentration pack showed the coating layer without the large hafunium rich precipitates, and after the high temperature oxidation test at 1273K for 1800 ksec, it did not show the deep localized corrosion. The nickel electroplating before the aluminizing forms thick hafnium free area, and its high temperature oxidation resistance were comparable to platinum modified aluminizing coatings at 1273K.

Evaluation of Micro-Tensile Properties for Nano-coating Material TiN (나노 코팅재 TiN 의 마이크로 인장 특성 평가)

  • Huh, Yong-Hak;Kim, Dong-Iel;Hahn, Jun-Hee;Kim, Gwang-Seok;Yeon, Soon-Chang;Kim, Yong-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.240-245
    • /
    • 2004
  • Tensile properties of hard coating material, TiN, were evaluated using micro-tensile testing system. TiN has been known as a hard coating material commonly used today. Micro-tensile testing system consisted of a micro tensile loading system and a micro-ESPI(Electronic Speckle Pattern Interferometry) system. Micro-tensile loading system had a maximum load capacity of 500mN and a resolution of 4.5 nm in stroke. TiN thin film $1{\mu}m$ thick was deposited on the Si wafer pre-deposited of $Si_3N_4$ film substrate by the closed field unbalanced magnetron sputtering (CFUBMS) process. Three kinds of micro-tensile specimen with the respective width of $50{\mu}m$, $100{\mu}m$ and $500{\mu}m$ were fabricated by MEMS process. The mechanical properties including tensile strength and elastic modulus were determined using the micro-tensile testing system and compared by those obtained by nano-indentation

  • PDF

Anode-supported Type SOFCs based on Novel Low Temperature Ceramic Coating Process

  • Choi, Jong-Jin;Ahn, Cheol-Woo;Kim, Jong-Woo;Ryu, Jungho;Hahn, Byung-Dong;Yoon, Woon-Ha;Park, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.338-343
    • /
    • 2015
  • To prevent an interfacial reaction between the anode and the electrolyte layer during the conventional high-temperature co-firing process, an anode-supported type cell with a thin-film electrolyte was fabricated by low-temperature ceramic thick film coating process. Ni-GDC cermet composite was used as the anode material and YSZ was used as the electrolyte material. Open circuit voltage and maximum power density were found to strongly depend on the surface uniformity of the anode functional layer. By optimizing the microstructure of the anode functional layer, the open circuit voltage and maximum powder density of the cell increased to 1.11 V and $1.35W/cm^2$, respectively, at $750^{\circ}C$. When a GDC barrier layer was applied between the YSZ electrolyte and the LSCF cathode, the cell showed good stability, with almost no degradation up to 100 h. Anode-supported type SOFCs with high performance and good stability were fabricated using a coating process.

Interference Effects on the Thickness of a Pulse Pressure Sensor Array Coated with Silicone (맥 센서 어레이(array)의 실리콘(silicone) 코팅 두께에 따른 센서 간 간섭효과)

  • Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Pulse diagnosis is one of the representative diagnostic methods in Oriental medicine. In this study, a pulse pressure sensor array coated with silicone, which includes 6 piezo-resistive sensors and 1 thermistor, is fabricated for pulse measurement. It is necessary to coat the pulse sensor array with silicone to avoid the fracture or damage of pressure sensors when the sensor is in contact with the skin and a constant pressure is applied. However, the silicone coating on the pulse sensor array can cause signal interference among the sensors in the pulse sensor array. The interference number (IN), a calculation for expressing the degree of interference among channels, is changed according to the silicone thickness on the pulse sensor array. The IN is increased by a thick silicone coating, but the fabrication error, an important index for the mass production of the sensor array, is reduced by the thickness of the silicone coating. We propose that the thickness of the silicone on the pulse sensor array is an important consideration for the performance of the fabricated sensor and manufacturing repeatability.

A Study on Fretting Wear of CrN and TiN coated Tubes in a Nuclear Steam Generator (CrN과 TiN 코팅을 적용한 증기 발생기 세관의 프레팅 마모에 대한 연구)

  • Lee, Young-Ze;Park, Jung-Min;Jeong, Sung-Hoon;Kim, Jin-Seon;Park, Se-Min
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.250-254
    • /
    • 2008
  • The steam generator of nuclear power plant is composed with the bundles of long tubes. It is exposed fluid flow and weak in the vibration. The tubes are supported by anti-vibration bars. Due to vibration the wear damage is called as the fretting wear. It should be minimized for the safety of the plants. The hard coatings are very effective to reduce the amount of wear. The coatings of TiN and CrN are introduced in this study to protect the fretting surfaces. The tube-on-flat type tester was used for fretting wear tests. The results show that the wear amounts of the coated tubes were decreased depending on coating thickness. CrN was very effective to reduce the wear. In case of TiN the wear amounts were dependent on the coating thickness. Thick coating of TiN was very effective for wear resistance.

Influence of Yb2O3 Doping Amount on Screen-printed Barium Strontium Calcium Titanate Thick Films

  • Noh, Hyun-Ji;Lee, Sung-Gap;Ahn, Byeong-Lib;Lee, Ju
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.241-245
    • /
    • 2007
  • [ $(Ba_{0.9-x}Sr_xCa_{0.10})TiO_3$ ] (x=0.33, 0.36) powders were prepared by sol-gel method. $(Ba,Sr,Ca)TiO_3$(BSCT) thick films, undoped and doped with $MnCO_3$ and $Yb_2O_3(0.1{\sim}0.7mol%)$, were fabricated by the screen printing method on the alumina substrate. The coating and drying procedure was repeated 6-times. The Pt bottom electrode was screen printing method on the alumina substrate. These BSCT thick films were annealed at $1420^{\circ}C$ for 2 hr in atmosphere. The upper electrodes were fabricated by screen printing the Ag paste and then firing at $590^{\circ}C$ for 10 min. And then the structured and dielectric properties as a function of the doping amount of $Yb_2O_3$ were studied. As a result of the TG-DTA, exothermic peak was observed at around $670^{\circ}C$ due to the formation of the polycrystalline perovskite phase. All BSCT thick films showed XRD patterns of typical cubic peroveskite structure. The average thickness of BSCT thick films was about $70^{\mu}m$. The curie temperature and the dielectric constant decreased with increasing $Yb_2O_3$ doped content and the relative dielectric constant of the specimen, doped with 0.5 mol% $Yb_2O_3$ at BSCT(54/36/10), showed a best value of 5018 at curie temperature.

The biocompatibility and mechanical properties of plasma sprayed zirconia coated abutment

  • Huang, Zhengfei;Wang, Zhifeng;Yin, Kaifeng;Li, Chuanhua;Guo, Meihua;Lan, Jing
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.157-166
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the clinical performance and reliability of plasma sprayed nanostructured zirconia (NSZ) coating. MATERIALS AND METHODS. This study consisted of three areas of analysis: (1) Mechanical property: surface roughness of NSZ coating and bond strength between NSZ coating and titanium specimens were measured, and the microstructure of bonding interface was also observed by scanning election microscope (SEM). (2) Biocompatibility: hemolysis tests, cell proliferation tests, and rat subcutaneous implant test were conducted to evaluate the biocompatibility of NSZ coating. (3) Mechanical compatibility: fracture and artificial aging tests were performed to measure the mechanical compatibility of NSZ-coated titanium abutments. RESULTS. In the mechanical study, 400 ㎛ thick NSZ coatings had the highest bond strength (71.22 ± 1.02 MPa), and a compact transition layer could be observed. In addition, NSZ coating showed excellent biocompatibility in both hemolysis tests and cell proliferation tests. In subcutaneous implant test, NSZ-coated plates showed similar inflammation elimination and fibrous tissue formation processes with that of titanium specimens. Regarding fatigue tests, all NSZ-coated abutments survived in the five-year fatigue test and showed sufficient fracture strength (407.65-663.7 N) for incisor teeth. CONCLUSION. In this study, the plasmasprayed NSZ-coated titanium abutments presented sufficient fracture strength and biocompatibility, and it was demonstrated that plasma spray was a reliable method to prepare high-quality zirconia coating.

Implementation of Computerized Assistant Diagnosis Software for Tongue Diagnosis in the Oriental Medicine (한방 설진을 위한 컴퓨터 지원 진단 소프트웨어 구현)

  • Lee, Woo Beom
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.175-182
    • /
    • 2014
  • Development of an objective diagnosis index for diagnosing a the beginning nature of a disease is the most one of tongue diagnosis in the oriental medicine. However, previous systems have a difficult problem in the creation of objective diagnosis index, and focused on the expert system that can diagnose automatically without an oriental doctor behavior. Therefore, computerized assistant diagnosis software for calculating an optimized diagnosis index is proposed in this paper. This software is operated by the diagnosing behavior of oriental doctor. As developed software is a semi-automatic system, manual method is used to segment a tongue body. Futhermore, numerical diagnosis indices including the color information of non-tongue coating and tongue coating, WTCI are provided to oriental doctor automatically and real-timely. Also, probability estimation value for classifying no coating, thin coating, and thick coating is presented by using the tongue coating area ratio, and EMR chart can use for convenience of diagnosis. In order to evaluate the effectiveness of the our developed software, after building a various tongue image from 60 subjects, we experimented on diagnosis image with our software. As a result, the developed software showed the 95% use-effectiveness of subjects.

Manufacturing and Macroscopic Properties of Kinetic Spray Ni-Cr-Al-Y Coating Layer

  • Kim, Ji Won;Lee, Ji Hye;Jang, Hae Chang;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.408-412
    • /
    • 2015
  • This study attempts to manufacture a Ni-Cr-Al-Y coating layer using a kinetic spray process and investigates the microstructure and physical properties of the manufactured layer. The Ni-22Cr-10Al-1Y (wt.%) composition powder is used, and it has a spherical shape with an average diameter of $23.7{\mu}m$. Cu plate is used as the substrate. Optical microscope, X-ray diffraction, scanning electron microscope and Vickers hardness test are carried out to characterize the macroscopic properties of the coating layer. Furthermore, the coating layer underwent vacuum heat treatment at temperatures of $400^{\circ}C$ and $600^{\circ}C$ for 1 hour to check the effect of heat treatment temperature on the properties. The manufactured coating layer is 1.5 mm thick, and featured identical phases to those found in the powder. The porosity of the coating layer is measured at 2.99%, and the hardness is obtained at $490.57H_v$. The layer shows reduced porosity as heat treatment temperature increased, and hardness is reduced at $400^{\circ}C$ but shows a slight increase at $600^{\circ}C$. Based on the findings described above, this study also discusses possible manufacturing methods for a Ni-Cr-Al-Y coating layer using the kinetic spray process.