• Title/Summary/Keyword: thermostable protease

Search Result 26, Processing Time 0.021 seconds

Minor Thermostable Alkaline Protease Produced by Thermoactinomyces sp. E79

  • Kim, Young-Ok;Lee, Jung-Kee;Sunitha, Kandula;Kim, Hyung-Kwoun;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.469-474
    • /
    • 1999
  • Thermoactinomyces sp. E79 produced two types of thermostable alkaline proteases extracellularly. A minor protease was separated from a major protease by using DEAE-column chromatography. This enzyme was purified to homogeneity by ammonium sulfate and DEAE-Sepharose ion-exchange chromatography. The purified minor protease showed different biochemical properties compared to the major protease. The molecular mass of the purified enzyme was estimated by SDS-PAGE to be 36 kDa. Its optimum temperature and pH for proteolytic activity against Hammarsten casein were $70^{\circ}C$ and 9.0, respectively. The enzyme was stable up to$75^{\circ}C$ and in an alkaline pH range of 9.0-11.0. The enzyme was inhibited by phenylmethylsulfonyl fluoride (PMSF) and $Hg^{2+}, indicating that the enzyme may be a cysteine-dependent serine protease. In addition, the enzyme cleaved the endoproteinase substrate, succinyl-Ala-Ala-Pro-Phe-p- nitroanilide, and the $K_m$ value for the substrate was 1.2 mM.

  • PDF

Purification and Characterization of Two Thermostable Proteases from the Thermophilic Fungus Chaetomium thermophilum

  • Li, An-Na;Ding, AI-Yun;Chen, Jing;Liu, Shou-An;Zhang, Ming;Li, Duo-Chuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.624-631
    • /
    • 2007
  • Thermostable protease is very effective to improve the industrial processes in many fields. Two thermostable extracellular proteases from the culture supernatant of the thermophilic fungus Chaetomium thermophilum were purified to homogeneity by tractional ammonium sulfate precipitation, ion-exchange chromatography on DEAE-Sepharose, and Phenyl-Sepharose hydrophobic interaction chromatography. By SDS-PAGE, the molecular mass of the two purified enzymes was estimated to be 33 kDa and 63 kDa, respectively. The two proteases were found to be inhibited by PMSF, but not by iodoacetamide and EDTA. The 33 kDa protease (PRO33) exhibited maximal activity at pH 10.0 and the 63kDa protease (PRO63) at pH5.0. The optimum temperature for the two proteases was $65^{\circ}C$. The PRO33 had a $K_m$ value of 6.6mM and a $V_{max}$ value of $10.31{\mu}mol/l/min$, and PRO63 l7.6mM and $9.08{\mu}mol/l/min$, with casein as substrate. They were thermostable at $60^{\circ}C$. The protease activity of PRO33 and PRO63 remained at 67.2% and 17.31%, respectively, after incubation at $70^{\circ}C$ for 1h. The thermal stability of the two enzymes was significantly enhanced by $Ca^{2+}$. The residual activity of PRO33 and PRO63 at $70^{\circ}C$ after 60min was approximately 88.59% and 39.2%, respectively, when kept in the buffer containing $Ca^{2+}$. These properties make them applicable for many biotechnological purposes.

Analysis of Producing of Thermostable Alkaline Protease using Thermoactinomyces sp. E79 (Thermoactinomyces sp. E79를 이용한 내열성 Alkaline 단백질 분해효소 생산:환경인자의 영향)

  • 정상원;박성식;박용철;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.3
    • /
    • pp.167-171
    • /
    • 2000
  • Analysis of Production of Thermostable Alkaline Protease using Thermoactinomyces sp. E79. Jung, Sang Won, Sung-Sik Park, Yong-Cheol Park" Tae Kwang Oh2, and Jin-Ho Seo*, Department of Food Science and Technology, Seoul National University, Suwon 441-744, Korea, 1lnterdisciplinary program [or Biochemical Engineering & Biotechnology, Seoul National Univer5it}~ Seoul 151 "7421 Koreal 2Microbial Enzyme RU, Korea Research Institute of Bioscience & Biotechnology, Po. Box 1151 Yusong, Taejon 305"6001 Korea - This research was undertaken to analyze fermentation properties of Thermoactinomyces sp. E79 for production of a thermostable alkaline protease, which is able to specifically hydrolyze defatted soybean meal (DSM) to amino acids. TIle optimum pH for cell growth and protease production was pH 6.7, Thermoactinomyces sp. E79 did not grow at pHlO Among carbon sources tested, soluble starch was the best for protease production, while glucose repressed protease production. Tryptone was found to be the best nitrogen source for cell growth and soytone was good tor protease production. Oxygen transfer rate played an important role in producing thermostable alkaline protease. Ma'<..imum values of 6.58 glL of dry cell weight and 43.0 UJmL of protease activity were obtained in a batch fermentation using a 2.5 L jar fermentor at 1.93 X 102 hr-l of volumetric oxygen transfer coeff'jcient (kLa). Addition of 200 mgIL humic acid to the growth medium resulted in 1.64 times higher protease activity and 1.77 times higher cell growth than the case without humic acid addition.

  • PDF

Isolation. production. purification and biochemical properties of thermostable protease produced by actinomycetes CS0707 isolated from Korean soil.

  • Nam, Doo-Hyun;Park, Cheol-Hee;Kee, Keun-Hong;Kim, Si-Wouk;Han, Ji-Man;Kim, Joon-Ho;Lee, Hyo-Jung;Yoo, Jin-Cheol
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.331.2-331.2
    • /
    • 2002
  • Actinomycetes CS0707 has been isolated in soil sample from location in the Jeju province. Korea, and produces thermostable extracellular proteases. Actinomycetes CS0703 showed the highest protease activity at late exponential phase when grown in OSYM medium (oatmeal 2.0%, soybean meal 1 %, dried yeast 1 %, mannitol 1 %) at $48^{\circ}C$. Three forms of protease(Ta-1, TA-2 and Ta-3) were fractionated by Ultrogel AcA 54 column chromatography, and further purified through ammonium sulfate fractionation, ultramembrane filtration, and DEAE-sepharose CL-6B column chromatography. (omitted)

  • PDF

Purification and Characterization of a Thermostable Protease from Pseudomonas aeruginosa NS-83

  • Kim, Hyung-Kwoun;Kim, Kee-Hyun;Lee, Jung-Kee;Bae, Kyung-Sook;Sung, Chang;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.113-118
    • /
    • 1994
  • A bacterial strain NS-83 isolated from soil was able to produce an extracellular thermostable protease. The strain was identified as Pseudomonas aeruginosa based on its morphological and physiological characteristics. A thermostable protease from this strain has been purified to homogeneity as judged by SDS-PAGE and isoelectric focusing. The purification procedures included hydrophobic interaction, ion exchange, and gel filtration chromatography. The $M_r$ and the pl of the enzyme were 32,000 and 5.9, respectively. The optimal pH at 55$^{\circ}C$ and the optimal temperature at pH 7.0 were 8.0 and 60$^{\circ}C$, respectively. The D-values of the enzyme at 60, 65, and 70$^{\circ}C$ were 22, 2.1, and 0.75 hrs, respectively. The enzyme activity was significantly inhibited in the presence of 1 mM o-phenanthroline or EDTA, suggesting that the enzyme is metalloprotease. The $K_m$, and $V_{max}$ for Hammarsten casein were found to be 3.2 mg/ml and 0.918 unit/ml, respectively. These enzymatic properties were similar to those of elastase produced from P. aeruginosa IFO 3455, but the enzyme was clearly different from the reported elastase, in respect to $Ca^{++}$ effects on enzyme-thermostability. This property, together with amino acid composition analysis, confirmed that the enzyme differs from the known P. aeruginosa elastase.

  • PDF

Bacillus licheniformis NS70으로부터 내열성 Alkaline Protease 생산을 위한 배지최적화

  • Koo, Ja-Hyup;Choi, In-Jae;Nam, Hee-Sop;Lee, Hyung-Jae;Shin, Zae-Ik;Oh, Tae-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.207-211
    • /
    • 1997
  • Media optimization for the production of thermostable protease specifically hydrolyzing defatted soybean meal (DSM) from Bacillus licheniformis NS70 was performed by two methods, one-at-a-time method and response surface methodology (RSM). The best carbon source and nitrogen source for the protease production were lactose and DSM, respectively. The maximum protease production estimated by RSM was 606 U/L at 1.11% lactose and 0.43% DSM, the value of which was nearly consistent to the experimental value of 599 U/L. Yeast extract suppressed the protease production. The medium pH was slightly increased at the beginning stage of fermentation, and it tended to decrease after 8 hours. The optimal pH for the protease production was 7.2 in the batch fermentation.

  • PDF

Production and Characterization of Thermostable Protease from Bacillus licheniformis Isolated from Korean Traditional Soybean Paste (재래식 된장에서 분리된 Bacillus licheniformis의 내열성 Protease 특성과 생산성)

  • Bae, Young Eun;Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.298-304
    • /
    • 2012
  • Among 63 Bacillus strains grown at $60^{\circ}C$ from sixteen samples of homemade Korean soybean paste, one strain was selected for producing the thermostable protease. The isolate has been identified as Bacillus licheniformis on the basis of its 16S rDNA sequence, morphology and biochemical properties. Culture filtrate of the isolate showed maximal protease activity at the reaction condition of $60-65^{\circ}C$ and pH 11. The culture filtrate retained more than 87% of initial protease activity after incubation for 30 min at $60^{\circ}C$ without substrate. In order to develop the medium composition, effects of ingredients including nitrogen sources, carbon sources, metal ions and phosphate were examined for protease production of the isolate. Lactose and soytone peptone were the most effective carbon and nitrogen source for the enzyme production. After the late logarithmic growth phase the isolate began to produce the protease, and the maximum protease productivity was reached to 550 unit/ml in the optimized medium consisting of lactose (3%), soytone peptone (1.5%), $MgSO_4$ (0.1%), $K_2HPO_4$ (0.03%), and $KH_2PO_4$ (0.03%) at 28 h of incubation.

Characterization of a Thermostable Protease from Thermophilic Bacillus amyloliquefaciens NS 15-4 (고온성 Bacillus amyloliquefaciens NS 15-4가 생산하는 내열성 Protease의 특성)

  • Kim, Hyung-Kwoun;Kim, Kee-Hyun;Lee, Jung-Kee;Kim, Young-Ok;Nam, Hee-Sop;Oh, Tae Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.322-328
    • /
    • 1995
  • A thermophilic bacteria showing proteolytic activity against defatted soybean was isolated from soil. It was identified as Bacillus amyloliquefaciens based on its morphological and physiological characteristics. The Bacillus amyloliquefaciens NS 15-4 was cultivated at 50$\circ$C by rotary shaking in a medium containing defatted soybean. An extracellular protease from this strain was purified to homogeneity by ammonium sulfate precipitation, ion exchange, and hydrophobic interaction chromatographies. The molecular weight of the enzyme was estimated to be approximately 30,000 by SDS-PAGE and the N-terminal amino acid sequence of the enzyme was turned out to be AQSVPYGISQIKAPA. The optimum temperature and pH for the enzyme reaction were 60$\circ$C and 11, respectively, and its thermostability was increased by the addition of calcium ion. The enzyme was inactivated by phenylmethylsulfonylfluoride, suggesting it be a serine protease. Comparing with other commercial proteases, the enzyme showed relatively high proteolytic activity against defatted soybean, a water-insoluble protein substrate.

  • PDF

Characterization and Production of Thermostable and Acid-stable Extracellular Fibrinolytic Enzymes from Cordyceps militaris

  • Kim, Seon-Ah;Son, Hong-Joo;Kim, Keun-Ki;Park, Hyun-Chul;Lee, Sang-Mong;Cho, Byung-Wook;Kim, Yong-Gyun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.22 no.2
    • /
    • pp.83-93
    • /
    • 2011
  • Biochemical and enzymatic characterization for extracellular protease isolated from Cordyceps militaris cultivated on rice bran medium was investigated. C militaris produced proteolytic enzymes from 10 days after inoculation, maximum enzyme production was found at 25 days. The optimum temperature and pH of proteases production was at $25^{\circ}C$ and pH 7.0, respectively. The protease activity was observed in the four peaks (Pro-I, Pro-II, Pro-III, and Pro-IV) separated through Sephadex G-100 column chromatography. The separated protease was optimally active at $25^{\circ}C$. Optimum pH of the protease was between 7 and 8. Enzyme was also stable over at $30-80^{\circ}C$. The enzyme was highly stable in a pH range of 4-9. Protease activity was found to be slightly decreased by the addition of $Mg^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Fe^{2+}$ and $Cu^{2+}$, whereas inhibited by the addition of $Ca^{2+}$ and $Co^{2+}$ Protease activity was inhibited by protease inhibitor PMSF. On the other hand, the partially purified protease was investigated on proteolytic protease activity by zymogram gel electrophoresis using three substances (casein, gelatin and fibrin). Four active bands (F-I, FII, F-III, and F-IV) of fibrin degradation were revealed on fibrin zymogram gels. Both of F-II and FIII showed caseinolytic, fibrinolytic and gelatinolytic activities in three gels. Thermostability, pH stability, and pH-thermostability of the enzyme determined the residual fibrinolytic activity also displayed on fibrin zymogram gel. The only one enzyme (F-II) displayed over a broad range of temperature at $30-90^{\circ}C$. The FII displayed fibrinolytic activity in the pH range 3-5, but was inactivated in the range of pH 6-11. The F-I and F-III showed enzyme activity in the pH range of 6-11. In the pH-thermostability, the F-II only kept fibrinolytic activity after heating at $100^{\circ}C$ for 10, 20 and 30 min at pH 3 and pH 7, respectively. On the other hand, the F-II was retained activity until heating for 10 min under pH 11 condition. By using fibrin zymogram gel electrophoresis, extracellular fibrinolytic enzyme F-II from C. militaris showed unusual thermostable under acid and neutral conditions.