• Title/Summary/Keyword: thermoluminescent

Search Result 97, Processing Time 0.023 seconds

Some Characteristics of Teflon-Thermoluminescent Dosimeters (테프론 열형광선량계(熱螢光線量計)의 특성(特性))

  • Lee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.7 no.1
    • /
    • pp.23-33
    • /
    • 1982
  • The characteristic thermoluminescence responses of Teflon thermoluminescent dosimeters to radiations have been studied by the variation of radiation qualities as well as the high dose radiations. The change in the sensitivity of TLDs for different radiation qualities were studied through not only the photon energy dependence but also the change of supralinearity on the photon energy dependence, by exposing $^{60}Co$ gamma rays, the effective X-rays of 44keV, 69keV, 108keV, and thermal neutron of 0.04 eV. The results were as the following: The TL response of $T-CaSO_4$: Dy as a function of absorbed dose was linear up to about 5 Gy, and the response beyond 5Gy was supralinear for $^{60}Co$ gamma rays. The supralinearity of T-LiF-7 became noticeably apparent more than that of $T-CaSO_4$:Dy and also the lower the LET of radiation became the higher the supralinear effects were. No supralinearity appeared for the thermal neutron irradiations equivalent to 10Gy of $^{60}Co$ gamma rays. The relative sensitivities (Rs), which depended on the doses of $^{60}Co$ gamma rays to the TLDs of T-LiF-7 and T-$CaSO_4$:Dy could be, respectively, approximated to the following empirical formula fitted by the least square method: $$R_{LiF}=1.021-0.04581\;logD+0.402(logD)^2-0.405(logD)^3,\;\;5{\times}10^3{\geq}D{\geq}1(Gy)$$ $$R_{CaSO_4}=0.976-0.3241\;logD+0.262(logD)^2-0.298(logD)^3,\;5{\times}10^3{\geq}D{\geq}1(Gy)$$.

  • PDF

A Study on the Application of Two-dosimeter Algorithm to Estimate the Effective Dose in an Inhomogeneous Radiation Field at Korean Nuclear Power Plants (원전 불균일 방사선장하에서 유효선량 평가를 위한 복수선량계 알고리즘 적용방안 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.151-160
    • /
    • 2008
  • In Korean nuclear power plants (NPPs), two thermoluminescent dosimeters (TLD) were provided to workers who work in an inhomogeneous radiation field; one on the chest and the other on the head. In this way, the effective dose for radiation workers at NPPs was determined by the high deep dose between two radiation dose from these TLDs. This represented a conservative method of evaluating the degree of exposure to radiation. In this study, to prevent the overestimation of the effective dose, field application experiments were implemented using two-dosimeter algorithms developed by several international institutes for the selection of an optimal algorithm. The algorithms used by the Canadian Ontario Power Generation (OPG) and American ANSI HPS N13.41, NCRP (55/50), NCRP (70/30), EPRI (NRC), Lakslumanan, and Kim (Texas A&M University) were extensively analyzed as two-dosimeter algorithms. In particular, three additional TLDs were provided to radiation workers who wore them on the head, chest, and back during maintenance periods, and the measured value were analyzed. The results found no significant differences among the calculated effective doses, apart from Lakshmanan's algorithm. Thus, this paper recommends the NCRP(55/50) algorithm as an optimal two-dosimeter algorithm in consideration of the solid technical background of NCRP and the convenience of radiation works. In addition, it was determined that a two-dosimeter is provided to a single task which is expected to produce a dose rate of more than 1 mSv/hr, a difference of dose rates depending on specific parts of the body of more than 30%, and an exposure dose of more than 2 mSv.

A Study on the Fabrication and Physical Properties of $Ca_2SiO_4$:La Thermoluminescent Phosphors ($Ca_2SiO_4$: La 열형광체 제작과 물리적 특성에 관한 연구)

  • Kim, Choung-Mi;Seo, Mi-Kyong
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.4
    • /
    • pp.5-10
    • /
    • 2010
  • The $Ca_2SiO_4$ phosphors doped by La with 0.1 wt%, 0.3 wt%, 0.5 wt%, and 1.0 wt% concentration were prepared by sintering at $1000^{\circ}C$ for 90 minutes in N2 atmosphere. The phosphors were ground in powdered form and were grouped in $100{\mu}m$ size, then the samples had been exposed to low energy X-ray and UV light. The TL glow curves were measured by heating the phosphors at $10^{\circ}C/s$ rate. There was no significantly meaningful correlation between the TL intensity and the doping level. The intensities of the TL peak measured from X-ray irradiated samples doped with 0.1 wt% were relatively strong. The activation energy and the frequency factor were 0.434 ~ 0.516 eV and 0.5 ~ 0.56, respectively. The intensities of the TL peak measured from UV irradiated samples doped with 0.3 wt% were relatively strong. The activation energy and frequency factor were 0.415 ~ 0.477 eV and 0.5 ~ 0.53, respectively. The TL process were found to be the 2nd order for both X-ray and UV irradiation. The TL intensity was increased linearly with the increase of the radiation dose. In summary, the $Ca_2SiO_4 phosphors developed in this study showed good TL characteristics at low energy X-ray and UV light. We believe they will be used as TLDs in near future for personal and environmental radiation detection dosimetry.

Dosimetry by Using EBT2 Film for Total Skin Electron Beam Therapy (TSET) (전신 피부 전자선 치료(TSET)에서 EBT2 필름을 사용한 선량측정)

  • Hwang, Ui-Jung;Rah, Jeong-Eun;Jeong, Ho-Jin;Ahn, Sung-Hwan;Kim, Dong-Wook;Lee, Sang-Yeob;Lim, Young-Gyung;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Park, Sung-Young;Pyo, Hong-Ryull;Chung, Weon-Kuu
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.60-69
    • /
    • 2010
  • For treatment of Total Skin Electron beam Therapy (TSET), measurement of dose at various conditions is need on the contrary to usual radiotherapy. When treating TSET with modified Stanford technique based on linear accelerator, the energy of treatment electron beam, the spatial dose distribution and the actual doses deposited on the surface of the patient were measured by using EBT2. The measured energy of the electron beam was agreed with the value that measured by ionization chamber, and the spatial dose distribution at the patient position and the doses at several point on the patient's skin could be easily measured by EBT2 film. The dose on the patient that was measured by EBT2 film showed good agreement with the data measured simultaneously by TLD. With the results of this study, it was proven that the EBT2 film can be one of the useful dosimeter for TSET.

Absorbed and effective dose for periapical radiography using portable and wall type dental X-ray machines (이동형 구내방사선촬영기와 벽걸이 구내방사선촬영기로 촬영한 치근단 방사선촬영에서 환자의 흡수선량과 유효선량 평가)

  • Han, Won-Jeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.184-190
    • /
    • 2012
  • Purpose: The purpose of this study was to measure the absorbed dose and to calculate the effective dose for one periapical radiography using the portable and wall type dental X-ray machines. Materials and methods: Thermoluminescent chips were placed at 25 sites throughout the layers of the head and neck of a tissue-equivalent human skull phantom. The man phantom was exposed with the portable and wall type dental X-ray machines. For one periapical radiography taken by portable dental X-ray machine, the exposure setting was 60 kVp, 2 mA and 0.2 seconds, while for one periapical radiography taken by wall type dental X-ray machine, exposure setting was 70 kVp, 8 mA and 0.074 seconds. Absorbed dose measurements were performed and equivalent doses to individual organs were summed using ICRP 103 to calculate effective dose. Results: In the upper anterior periapical radiography using portable dental X-ray machine and in the lower posterior periapical radiography using both machines, the highest absorbed dose was recorded at the mandible body. The effective dose in upper anterior periapical radiography using portable and wall type dental X-ray machines was $4{\mu}Sv$, $2{\mu}Sv$, respectively. In the lower posterior periapical radiography, the effective dose for each portable and wall type dental X-ray machines was $6{\mu}Sv$, $2{\mu}Sv$. Conclusion: It was recommended that the operator use prudently potable dental X-ray machine because that the effective dose in the periapical radiography using wall type dental X-ray machine was lower than that in the periapical radiography using portable dental X-ray machine.

The Effects of Metal Plate loaded on TLD chip in 6 MV Photon and 6 MeV Electron Beams (6 MV 광자선과 6 MeV 전자선 하에서 TLD 기판 위에 얹힌 금속 박막의 효과)

  • Kim, Sookil;Byungnim Min
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.41-46
    • /
    • 1999
  • There is necessity for making a smaller and more sensitive detector in small field sizes. This report assesses the suitability of metal-loaded thermoluminescent dosimeters for this purpose. Measurements were performed in the 6 MV photon and 6 MeV electron beams of a medical linear accelerator with LiF thermoluminescence dosimeters (TLD-100) embedded in solid water phantom. TLD-100 chips(surface area 3.2 $\times$ 3.2 $\textrm{mm}^2$) loaded with a metal plate(Tin or gold respectively) were used to enhance dose readings to TLD-100. Surface dose was measured for field size 10 $\times$ 10 $\textrm{cm}^2$ and 100 em SSD. Measurements have been made of the enhanced signal intensity and good linearity for absorbed dose with each metal. Using a 1 mm each metal on TLD-l00 in the beam increased the surface dose to 14% and 56% respectively for 6MV photon. In the case of 6 MeV electron, gold plate enhanced the TL response to 13%, but there is no difference for tin plate. The specific dose response of TLD-100 with thin metal plate increases with electron concentration of metal film, this is most likely due to increased electron scattered from the additional material with electron density higher than TLD-100. This emphasizes the role of TL dosimeters with metal as amplified dosimeters for therapeutic high energy x-ray beams. Due to the enhanced dose reading of TLD-100 with metal plate, it could be possible to develop smaller TL dosimeter with high sensitivity.

  • PDF

Photon Energy Dependence of the Sensitivity of LiF TLDs Loaded with Thin Material (얇은 박막을 얹은 TLD 반응감도의 광자 에너지에 대한 의존성)

  • Min Byongim J;Kim Sookil;Loh John J.K;Cho Young Kap
    • Radiation Oncology Journal
    • /
    • v.17 no.3
    • /
    • pp.256-260
    • /
    • 1999
  • Purpose : An investigation has been carried out on the factors which affect the response reading of thermoluminescent dosimeters (TLD-100) loaded with thin material in high energy Photon. The aim of the study was to assess the energy response of TLD-100 to the therapeutic ranges of photon beam. Materials and Methods : In this technique, TLD-100 (abbreviated as TLD) chips and three different thin material (Tin, Gold, and Tissue equivalent plastic plate) which mounted on the TLD chip were used in the clinical photon beam. The thickness of each metal plates was 0.1 mm and TE plastic plate was 1 mm thick. These compared with the photon energy dependence of the sensitivities of TLD (normal chip), TLD loaded with Tin or Gold plate, for the photon energy range 6 MV to 15 MV, which was of interest in radiotherapy. Results : The enhancement of surface dose in the TLD with metal plate was clearly detected. The TLD chips with a Gold plate was found to larger response by a factor of 1.83 in 10 MV photon beam with respect to normal chip. The sensitivity of TLD loaded with Tin was less than that for normal TLD and TLD loaded with Gold. The relative sensitivity of TLD loaded with metal has little energy dependence. Conclusion : The good stability and linearity with respect to monitor units of TLD loaded with metal were demonstrated by relative measurements in high energy Photon ($6\~15$ MV) beams. The TLD laminated with metals embedded system in solid water phantom is a suitable detector for relative dose measurements in a small beam size and surface dose.

  • PDF

Comparative Analysis of Absorption Doses between Exposed and Unexposed Area on Major Organs During CT Scan (전산화 단층촬영시 주선속내 외의 주요장기 흡수선량 비교분석)

  • 사정호;서태석;최보영;정규회
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.59-71
    • /
    • 2000
  • It is possible to obtain a fast CT scan during breath holding with spiral technique. But the risk of radiation is increased due to detailed and repeated scans. However, the limitation of X-ray doses is not fully specified on CT, yet. Therefore, the purpose of the present study is to define the limitation of X-ray doses on CT The CT unit was somatom plus 4. Alderson Rando phantom, Solenoid water phantom, TLD, and reader were used. For determining adequate position and size of organs, the measurement of distance(${\pm}$2mm) from the midline of vertebral body was performed in 40 women(20~40 years). On the brain scan for 8:8(8mm slice thickness, 8mm/sec movement velocity of the table) and 10:10(10mm slice thickness, 10mm/sec movement velocity of the table) methods, the absorption doses of exposed area of the 10:10 were slightly higher than those of 8:8. The doses of unexposed uterus were negligible on the brain scan for both 8:8 and 10:10. On the chest scan for 8:8, 8:10(8mm slice thickness, 10mm/sec movement velocity of the table), 10:10, 10:12(10mm slice thickness, 12mm/sec movement velocity of the table) and 10:15(10mm slice thickness, 15mm/sec movement velocity of the table) methods, 8:8 method of the absorption doses of exposure area was the most highest and 10:15 method was the most lowest. The absorption doses of 8:10 method was relatively lower than those of the other methods. In conclusion, the 8:10 method is the most suitable to give a low radiation burden to patient without distorting image quality.

  • PDF

Skin Damage Sustained During Head-and-Neck and Shoulder Radiotherapy Due to the Curvature of Skin and the Use of Immobilization Mask (머리-목 그리고 어깨의 방사선 치료 시 피부곡면과 고정장치로 인한 피부손상연구)

  • Kim, Soo-Kil;Jeung, Tae-Sig;Lim, Sang-Wook;Park, Yeong-Mouk;Park, Dahl
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.86-92
    • /
    • 2010
  • The purpose of this study was to measure curvature contour skin dose using radiochromic film and TLD for a conventional open field. We also attempted to quantify the degradation of skin sparing associated with use of immobilization devices for high energy photon beams and to calculate the skin dose with a help of Monte Carlo (MC) simulation. To simulate head-and-neck and shoulder treatment, a cylindrical solid water phantom 11 cm in diameter was irradiated with 6 MV x-rays using $40{\times}40\;cm^2$ field at 100 cm source axis distance (SAD) to the center of the phantom. Aquaplastic mesh mask was placed on the surface of the cylindrical phantom that mimicked relevant clinical situations. The skin dose profile was obtained by taking measurements from $0^{\circ}$ to $360^{\circ}$ around the circumference of the cylindrical phantom. The skin doses obtained from radiochromic film were found to be 47% of the maximum dose of $D_{max}$ at the $0^{\circ}$ beam entry position and 61% at the $90^{\circ}$ oblique beam position without the mask. Using the mask (1.5 mm), the skin dose received was 59% at $0^{\circ}$ incidence and 78% at $80^{\circ}$ incidence. Skin dose results were also gathered using thin thermoluminescent dosimeters (TLD). With the mask, the skin dose was 66% at $0^{\circ}$ incidence and 80% at $80^{\circ}$ incidence. This method with the mask revealed the similar pattern as film measurement. For the treatments of the head-and-neck and shoulder regions in which immobilization mask was used, skin doses at around tangential angle were nearly the same as the prescription dose. When a sloping skin contour is encountered, skin doses may be abated using thinner and more perforated immoblization devices which should still maintain immoblization.

Comparison on the Dosimetry of TLD and PLD by Dose Area Product (DAP(Dose Area Product)를 이용한 TLD와 PLD의 선량 측정 비교)

  • Choi, Jae-Ho;Kang, Gu-Jun;Chang, Seo-Goo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2012
  • The results of analyzing the difference between performances of individual dosimeters on this research subjecting the PLD and TLD, which are the official personal dosimeters, through dosimetry are as follows. After scanning the integral dose using an automatic scanner, the values of two devices that went through dose adjustment process had a statistical difference in TLD and PLD measurements under each filming conditions which were 70kVp, 200mA, 0.012sec and 42kVp, 100mA, and 0.012sec (p<0.001 and p<0.001 respectively). As for the difference of measurement value between DAP and the two particles under 70kVp, 200mA, 0.012sec filming condition, TLD had a value lower than DAP average value by $44.2mGy{\cdot}cm^2$ and PLD had a value of $246.8mGy{\cdot}cm^2$ which was lower than DAP average value by $15.5mGy{\cdot}cm^2$, while under 42kVp, 100mA, 0.012sec filming condition, TLD had a value lower than DAP average value by $17.9mGy{\cdot}cm^2$ and PLD had a value of $82.6mGy{\cdot}cm^2$ which was lower than DAP average value by 7.6$mGy{\cdot}cm^2$. Also, compared to PLD, each of 10 devices measured dose value in TLD had a larger deviation between the particles, and for a reproducibility test which repeatedly measured one particle, PLD had ${\pm}1%$ which was lower than TLD's ${\pm}2%$. As such, PLD had a superior performance result in dose measurement capacities aspect compared to TLD, and therefore we could verify that PLD is more appropriate and advantageous in managing radiation-related task performing worker's personal radiation exposure management in the diagnostic radiation field.