• Title/Summary/Keyword: thermoelectric modules

Search Result 58, Processing Time 0.023 seconds

Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Pulsating Heat Pipe

  • Kim Jeong-Hoon;Im Yong-Bin;Lee Seong-Ho;Lee Euk-Soo;Kim Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.217-224
    • /
    • 2005
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type pulsating heat pipe with R-142b as a working fluid. The experiment was performed for 16 thermoelectric modules (6A/15V, size: $40\times40\times4mm$), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc.). Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type pulsating heat pipe were $30\%$ by volume and $30^{\circ}$, respectively. The maximum cooler/heater capacity were 479 W (COP: 0.47) and 630 W (COP: 0.9), respectively.

Experimental Study on the Power Generation of a Thermoelectric Module with Temperature Difference and Load Resistance (온도차 및 부하 저항에 따른 열전모듈의 발전 특성 분석)

  • Lee, Kong-Hoon;Kim, Ook-Joong;Koh, Deuk-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1942-1947
    • /
    • 2007
  • A thermoelectric module can be used for cooling or power generation. The basic requirements to achieve a significant thermoelectric performance are the same for both generators and coolers. Thermoelectric modules with $Bi_2Te_3$ materials are usually employed in the cooling applications below room temperature but it can also be used for the power generation in the similar temperature range. In the present study, the power generation with a $Bi_2Te_3$ thermoelectric module has been investigated. The temperature difference between the hot and cold sides of the module is maintained with electric heater and cold water from the circulating water bath. The result shows that the electric current generated increases with temperature difference and decreases with the load resistance. However, the voltage increases with both the temperature difference and load resistance. The electric power increases with temperature difference and it has the maximum value when the load resistance is about 4 ${\Omega}$ for a given device.

  • PDF

A study on a precision temperature control unit using thermoelectirc module (열전소자를 이용한 정밀 항온 유지 장치에 관한 실험 및 시뮬레이션 연구)

  • Park, Kyung-Seo;Song, Young-Joog;Im, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay;Shin, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1937-1941
    • /
    • 2007
  • During a process of a nanoimprint for manufacturing LCD, a small temperature variation on the LCD glass can cause thermal stress and generate unexpected displacement. To avoid this trouble, a precision temperature control unit using thermoelectric modules is appropriate for nanoimprint processes. The unit consists of an air control system, a cooling water control system, and a power control system. The air control system includes a thermoelectric module, thermocouples measuring temperatures of air and a duct-stale fin, and two air fans. The heat generated by the thermoelectric module is absorbed by the cooling water control system. The power control system catches the temperature of the thermoelectric module, and a PID controller with SCR controls the input power of the thermoelectric module. Temperature control performance is evaluated by experiment and simulation. The temperature control unit is able to control the exit temperature about ${\pm}2^{\circ}C$ from the incoming fluid temperature, and the error range is ${\pm}0.1^{\circ}C$. However, the control time is approximately 30minute, which needs further study of active control

  • PDF

Influence of Metal-Coating Layer on an Electrical Resistivity of Thick-Film-Type Thermoelectric Modules Fabricated by a Screen Printing Process (스크린 프린팅 공정에 의해 제조된 열전후막모듈의 전기저항에 미치는 금속코팅층의 영향)

  • Kim, Kyung-Tae;Koo, Hye-Young;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.423-429
    • /
    • 2011
  • Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 ${\mu}m$ in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.

Transient cooling operation of multistage thermoelectric cooler (TEC)

  • Park, Jiho;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.55-59
    • /
    • 2021
  • A thermoelectric cooler (TEC) is promising as an alternative refrigeration technology for the sake of its inherent advantages; no-moving parts and refrigerant-free in its operation. Due to the compactness, reliability and excellence in temperature stability, TECs have been widely used for small cooling devices. In recent years, thermoelectric devices have been attractive technologies that not only serve the needs of cooling and heating applications but also meet the demand for energy by recycling waste heat. In this research paper, multistage TEC is proposed as a concept of demonstrating the idea of transient cooling technology. The key idea of transient cooling is to harnesses the thermal mass installed at the interfacial level of the stages. By storing heat temporally at the thermal mass, the multistage TEC can readily reach lower temperatures than that by a steady-state operation. The multistage TEC consists of four different sizes of thermoelectric modules and they are operated with an optimized current. Once the cold-part of the uppermost stage is reached at the no-load temperature, the current is successively supplied to the lower stages with a certain time interval; 25, 50 and 75 seconds. The results show the temperatures that can be ultimately reached at the cold-side of the lowermost stage are 197, 182 and 237 K, respectively. It can be concluded that the timing or total amount of the current fed to each thermoelectric module is the key parameter to determine the no-load temperature.

SPICE Modeling for Thermoelectric Modules (열전 모듈의 SPICE 모델링)

  • Park, Soon-Seo;Cho, Sung-Kyu;Baatar, Nyambayar;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.7-12
    • /
    • 2010
  • We have developed a SPICE compatible model of thermoelectric devices, and a parameter extracting technique only by electrical and temperature measurement by using Harman method was proposed. The proposed model and parameter extraction technique do not require experimental data from thermal conductivity measurements. The maximum error between extracted parameters extracted by proposed method and conventional method was about 14%, which is not a severe mismatch for real application. The proposed model is applicable to design of both for thermoelectric coolers and thermo electric generators.

Implementation of Single-Wire Communication Protocol for 3D IC Thermal Management Systems using a Thin Film Thermoelectric Cooler

  • Kim, Nam-Jae;Lee, Hyun-Ju;Kim, Shi-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • We propose and implement a single-wire communication protocol for thermal management systems using thin film thermoelectric modules for 3D IC cooling. The proposed single-wire communication protocol connects the temperature sensors, located near hot spots, to measure the local temperature of the chip. A unique ID number identifying the location of each hot spot is assigned to each temperature sensor. The prototype chip was fabricated by a $0.13{\mu}m$ CMOS MPW process, and the operation of the chip is verified.

Flow Simulation for Structure Validation of Passenger Car Seat Cooling & Heating Module (승용차 시트 쿨링 & 히팅 모듈의 구조 타당성 검증을 위한 유동 전산모사)

  • Gao, Jia-Chen;Park, Seul-Hyun;Ma, Sang-Dong;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.108-113
    • /
    • 2019
  • Due to the special structure of the car seat, the heating and cooling module must be installed in a limited area resulting in difficulty in regards to achieving optimal cooling and heating efficiency. In order to solve these problems, this paper establishes a new structure for heating and cooling modules, verifies the structural feasibility of the thermoelectric module for cooling and heating the seat through fluid simulations, and verifies the proper design of the mechanical components of the thermoelectric module.

A Study on the Diffusion Barrier at the p/n Junctions of $Bi_{0.5}Sb_{1.5}Te_3/Bi_2Te_{2.4}Se_{0.6} p/n$ Thermoelectric Thin Films (열전 박막 $Bi_{0.5}Sb_{1.5}Te_3/Bi_2Te_{2.4}Se_{0.6} p/n$ 접합에서의 확산 장벽에 관한 연구)

  • Kim, Il-Ho;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.678-683
    • /
    • 1996
  • In the fabrication processes of thin film thermoelectrics, a subsequent annealing treatment is inevitable to reduce the defects and residual stresses introduced during the film growth, and to make the uniform carrier concentration of the film. However, the diffusion-induced atomic redistribution and the broadening of p/n junction region are expected to affect the thermoelectric properties of thin film modules. The present study intends to investigate the diffusion at the p/n junctions of thermoelectric thin films and to relate it to the property changes. The film junctions of p-type(Bi0.5Sb1.5Te3)and n-type(Bi2Te2.4Se0.6)were prepared by the flash evaporation method. Aluminum thin layer was employed as a diffusion barrier between p-and n-type films of the junction. This was found to be an effective barrier by showing a negligible diffusion into both type films. After annealing treatment, the thermoelectric properties of p/n couples with aluminum barrier layer were accordingly retained their properties without any deterioration.

  • PDF

Introduction to the Thin Film Thermoelectric Cooler Design Theories (박막형 열전 냉각 모듈 제작을 위한 디자인 모델 소개)

  • Jeon, Seong-Jae;Jang, Bongkyun;Song, Jun Yeob;Hyun, Seungmin;Lee, Hoo-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.881-887
    • /
    • 2014
  • Micro-sized Peltier coolers are generally employed for uniformly distributing heat generated in the multi-chip packages. These coolers are commonly classified into vertical and planar devices, depending on the heat flow direction and the arrangement of thermoelectric materials on the used substrate. Owing to the strong need for evaluation of performance of thermoelectric modules, at present an establishment of proper theoretical model has been highly required. The design theory for micro-sized thermoelectric cooler should be considered with contact resistance. Cooling performance of these modules was significantly affected by their contact resistance such as electrical and thermal junction. In this paper, we introduce the useful and optimal design model of small dimension thermoelectric module.