• Title/Summary/Keyword: thermoelectric generator (TEG)

Search Result 20, Processing Time 0.027 seconds

Generation Efficiency and Thermal Performance of a Thermoelectric Generator with a High Power Electronic Component (고전력 전자소자에서 열전생성기의 생성효율과 열적성능)

  • Kim, Kyoung-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • This paper reports the generation efficiency and the thermal performance of a thermoelectric generator (TEG) harvesting energy from the waste heat of high power electronic components. A thermoelectric (TE) model containing thermal boundary resistances is used to predict generation efficiency and junction temperature of a high power electronic component. The predicted results are verified with measured values, and the discrepancy between prediction and measurement is seen to be moderate. The verified TE model predicts generation efficiencies, junction temperatures of the component, and temperature differences across a TEG at various source heat flows associated with various electrical load resistances. This study explores effects of the load resistance on the generation efficiency, the temperature difference across a TEG, and the junction temperature.

Development of 100W thermoelectric power generation module (100W급 열전발전 모듈 기술 개발)

  • Moon, Jihong;Hwang, Jungho;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.321-322
    • /
    • 2015
  • Thermoelectric power generation has emerged as a promising alternative technology because it offers a potential application in the direct conversion of waste heat into electric energy. The performance of thermoelectric power generator depends on thermoelectric materials and thermoelectric power module designs. The main objective of this study is to design a 100W thermoelectric generation (TEG) module and to get optimal operating conditions of the module. The design and performance of the TEG module will be presented.

  • PDF

Development of Simulation Model for Waste Heat Recovery from Automotive Engine Exhaust Using Thermoelectric Generator (열전소자를 이용한 자동차 엔진 배기 폐열 회수 시스템 해석 모델 개발)

  • Kim, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1022-1026
    • /
    • 2013
  • Recently, the waste heat recovery technique using thermoelectric generator (TEG) in automotive engine has emerged to improve thermal efficiency in commercial vehicle. It is not difficult to recognize the numerous attempts that have been made to develop the TEG simulation model, but it is hard to find the model in conjunction with a particular heat engine system. In this study, 1-D commercial software AMESim was used to develop a computational model that can assess waste heat recovery from a diesel engine exhaust using TEG. The developed TEG simulation model can be used for evaluating the TEG performance of various types of TE module, and the diesel engine model can simulate any type of on and off-road diesel engines. The simulation results demonstrated that approximately 544.75W could be recovered from the engine exhaust and 40.4W could be directly converted into electricity using one TE module. The models developed in this study can be easily coupled with each other in the same computational program; thus, the models are expected to provide a viable tool for developing and optimizing a TEG waste heat recovery system in an automotive diesel engine.

Structure and Characteristics of Tandem Solar Cell Composed of Dye-sensitized Solar Cell and Thermoelectric Generator (염료감응형 태양전지와 열전발전소자를 결합한 복합 태양전지의 구조 및 특성)

  • Lee, Dong-Yoon;Song, Jae-Sung;Lee, Won-Jae;Kim, In-Sung;Jeong, Soon-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.357-362
    • /
    • 2005
  • The tandem solar cell composed of a dye-sensitized solar cell (DSC) and a thermoelectric generator (TEG) was designed. In such new cell, the characteristics of DSC and TEG were investigated. DSC uses the wavelength range of 380∼750 nm and has the maximum efficiency of below 10 %. If the solar light transmitted through DSC can be converted to heat energy, TEG can generate electric energy using this heat energy. By this means, it is possible to utilize most of solar energy in the wavelength range of 350∼3000 nm for electric generation and it can be expected to obtain higher solar energy conversion efficiency exceeding the known limit of maximum efficiency. For this purpose we suggest the tandem solar cell constructed with DSC and TEG. In this structure, DSC has a carbon nanotube film as a counter electrode of DSC in order to collect the solar light and convert it to heat energy. We measured the I-V characteristics of DSC and TEG, assembled to the tandem cell. As a result, it was shown that DSC with carbon nanotube and TEG had the efficiency of 9.1 % and 6.2 %, respectively. From this results, it is expected that the tandem solar cell of the new design has the possibility of enhanced conversion efficiency to exceed above 15 %.

Study of Thermoelectric Generator with Various Thermal Conditions for Exhaust Gas from Internal Combustion Engine using Numerical Analysis (수치해석을 통한 엔진 배기가스의 조건 변화에 따른 열전소자 발전 특성에 관한 연구)

  • In, Byung Deok;Lee, Ki Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.243-248
    • /
    • 2013
  • Internal combustion engines typically expel 30%-40% of the energy supplied by fuel to the environment through their exhaust system. Therefore, further significant improvements in the thermal efficiency of IC engines are possible by recovering the waste heat from the engine exhaust gas. With this fact in mind, a numerical simulation was carried out to investigate the potential of using thermoelectric generation with an internal combustion engine for waste heat recovery. Physical parameters such as the exhaust temperature and mass flow rate were evaluated in the exhaust system, and the optimum location for inserting a thermoelectric generator (TEG) into the system was determined. The TEG will be located in the exhaust system and will use the energy flow between the warmer exhaust gas and the external environment. The optimum position of the temperature distribution and the TEG performance were predicted through numerical analysis. The experimental results obtained showed that the power output significantly increases with the temperature difference between the cold and hot sides of the TEG.

A Thermoelectric Energy Harvesting Circuit For a Wearable Application

  • Pham, Khoa Van;Truong, Son Ngoc;Yang, Wonsun;Min, Kyeong-Sik
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.66-69
    • /
    • 2017
  • In recent year, energy harvesting technologies from the ambient environments such as light, motion, wireless waves, and temperature again a lot of attraction form research community [1-5] due to its efficient solution in order to substitute for conventional power delivery methods, especially in wearable together with on-body applications. The drawbacks of battery-powered characteristic used in commodity applications lead to self-powered, long-lifetime circuit design. Thermoelectric generator, a solid-state sensor, is useful compared to the harvesting devices in order to enable self-sustained low-power applications. TEG based on the Seebeck effect is utilized to transfer thermal energy which is available with a temperature gradient into useful electrical energy. Depending on the temperature difference between two sides, amount of output power will be proportionally delivered. In this work, we illustrated a low-input voltage energy harvesting circuit applied discontinuous conduction mode (DCM) method for getting an adequate amount of energy from thermoelectric generator (TEG) for a specific wearable application. With a small temperature gradient harvested from human skin, the input voltage from the transducer is as low as 60mV, the proposed circuit, fabricated in a $0.6{\mu}m$ CMOS process, is capable of generating a regulated output voltage of 4.2V with an output power reaching to $40{\mu}W$. The proposed circuit is useful for powering energy to battery-less systems, such as wearable application devices.

Geometric Thermoelectric Generator Leg Shape Design for Efficient Waste Heat Recovery (효율적인 폐열 회수를 위한 기하학적 열전소자 다리 설계)

  • Hyeon-Woo Kang;Jung-Hoe Kim;Young-Ki Cho;Won-Seok Choi;Hyun-Ji Lee;Hun-Kee Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.589-602
    • /
    • 2024
  • Thermoelectric generator (TEG) generally do not have high heat conversion efficiencies. The performance of a thermoelectric generator module depends on the shape of the legs as well as the properties of the material and the number of legs. In this study, the leg shapes of thermoelectric elements are modeled into various geometric structures such as cylinder and cube shaped to efficiently harvest waste heat, and the electrical characteristics are compared numerically. The temperature gradient and power generation according to the bridge shape are found to be highest at the existing Cube shape. As a result of comparing the power generation using the cooling effect, the Cone shape was the highest in natural convection and the Hourglass shape was highest in forced convection. Research results confirm that geometry can affect the efficiency of thermoelectric generators.

Effect of cooling patches on performance of photovoltaic-thermoelectric hybrid energy devices (쿨링패치 부착에 따른 태양광-열전 융합소자의 성능 연구)

  • Lee, Jaehwan;Cho, Kyoungah;Park, Yoonbeom;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.716-720
    • /
    • 2021
  • In this study, we examine the availability of a cooling patch to enhance the output power of a hybrid energy device (HED) comprising a photovoltaic cell (PVC) and a thermoelectric generator (TEG). The cooling patch attached on the back of the TEG drops the temperature of the PVC via the TEG and makes a large thermal gradient across the TEG under irradiances in a range of 200 to 1000 W/m2. The cooling patch is more effective for the output power of the HED as the irradiance increases, and it enhances the maximum output power of the HED to 42.1 mW at an irradiance of 1000 W/m2. The increment in the maximum output power reaches 27% owing to the attachment of the cooling patch that does not consume any power.

Buck-Boost DC to DC Converter for Thermoelectric Generator with Constant Output Voltage (열전 모듈의 정전압 출력 시스템을 위한 벅-부스트 DC-DC 변환기)

  • Cho, Sung-Kyu;Park, Soon-Seo;Kim, Ji-Gon;Nam, Ki-Hun;Kim, Shi-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1845-1849
    • /
    • 2010
  • We have proposed and fabricated a Buck-Boost DC to DC Converter for Thermoelectric generator (TEG) with constant output voltage suitable for battery chargers or constant voltage supplies in the range of several watt. The experimental and simulation results have shown that the proposed method allows stable operation with maximum 86% power transfer efficiency. The proposed circuit has a merit in cost and miniaturization of a system compared to conventional MPPT algorithms, because the proposed method adopts only analog circuit without DSP or micro controller unit for calculating peak power point by iterative methods.

Design of Thermoelectric Films for Micro Generators (마이크로 발전기의 열전박막 설계)

  • Kim, Hyun-Se;Lee, Yang-Lae;Lee, Kong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1455-1458
    • /
    • 2007
  • In this research, a polycrystalline silicon (poly-Si) film layer for micro thermoelectric generator (TEG) was fabricated. The fabrication process of the thermoelectric poly-Si film layer is explained. The P-type and N-type poly-Si films were fabricated on a tetra ethoxy silane (TEOS) layer with a supporting Si wafer. Seebeck coefficient and electrical conductivity were measured, including the transport properties such as the hall coefficient, hall mobility and carrier concentration. The design parameters for a rapid thermal process (RTP) were decided based on the experimental results. The measured power factors of the P-type and N-type were $21.2\;{\mu}Wm^{-1}K^{-2}$ and $26.7\;{\mu}Wm^{-1}K^{-2}$, respectively.

  • PDF