DOI QR코드

DOI QR Code

Study of Thermoelectric Generator with Various Thermal Conditions for Exhaust Gas from Internal Combustion Engine using Numerical Analysis

수치해석을 통한 엔진 배기가스의 조건 변화에 따른 열전소자 발전 특성에 관한 연구

  • Received : 2012.03.05
  • Accepted : 2012.11.20
  • Published : 2013.03.01

Abstract

Internal combustion engines typically expel 30%-40% of the energy supplied by fuel to the environment through their exhaust system. Therefore, further significant improvements in the thermal efficiency of IC engines are possible by recovering the waste heat from the engine exhaust gas. With this fact in mind, a numerical simulation was carried out to investigate the potential of using thermoelectric generation with an internal combustion engine for waste heat recovery. Physical parameters such as the exhaust temperature and mass flow rate were evaluated in the exhaust system, and the optimum location for inserting a thermoelectric generator (TEG) into the system was determined. The TEG will be located in the exhaust system and will use the energy flow between the warmer exhaust gas and the external environment. The optimum position of the temperature distribution and the TEG performance were predicted through numerical analysis. The experimental results obtained showed that the power output significantly increases with the temperature difference between the cold and hot sides of the TEG.

내연기관은 연료로 공급되는 에너지의 30~40%만을 동력에너지로 전환되고 나머지 60~70%는 손실에너지와 배기에너지로 버려지게 된다. 따라서 배기에너지를 회수한다면 기계적 에너지 또는 전기적 에너지로 변환시킬 수 있다. 열전발전기는 배기관에 위치하여 고온 열원과 저온 열원 사이에 온도차를 이용한다. 두 열원 사이에 온도차를 이용하여 전기적 에너지를 발생시켜 동력 에너지 등 여러 에너지로 변환 가능하다. 이 논문에서는 이러한 열전발전기의 특성을 예측하기 위해 수치해석을 통하여 여러 조건에 따른 열전발전기 특성을 예측하였다. 수치해석 결과 고온 열원과 저온 열원 간의 온도 차이가 클수록 발생하는 전력 역시 증가하는 것을 알 수 있었다.

Keywords

References

  1. Endo, T., Kwajiri, S., Kojima, Y., Takahashi, K., Baba, T., Ibaraki, S., Takahashi, T. and Shinohara, M., 2007, "Study on Maximizing Exergy in Automotive Engines," SAE Technical Paper 2007-01-0257.
  2. Aleksandr, S.K., John, C.B., Saeid, G., Norbert, B.E., Richard, A.B., David, F. and Mike, M. 2001, "Thermoelectric Development ay Hi-Z Technology," Technical Paper.
  3. Crane, D., Jackson, G. and Holloway, D., 2001, "Towards Optimization of Automotive Waste Heat Recovery Using Thermoelectrics," SAE Technical Paper 2001-01-1021.
  4. Stobert, R. and Milner, D., 2009, "The Potential for Thermo-Electric Regeneration of Energy in Vehicles," SAE Technical Paper 2009-01-1333.
  5. Rowe, D. M., 2007, "Thermoelectric Handbook Macro to Nano," Taylor and Francis Group Press, Wales.
  6. Bass, J. C., Elsner, N. B. and Leavitt, F. A., 1994, "Performance of the 1kW Thermoelectric Generator for Diesel Engines," Proceedings of the 13th International Conference on Thermoelectrics, pp. 295-298.
  7. Wu, C., 1996, "Analysis of Waste-Heat Thermoelectric Power Generators," Applied Thermal Eng., Vol. 16, No. 1, pp. 63-69. https://doi.org/10.1016/1359-4311(95)00014-5
  8. Huang, B. J. Chin, C. J. and Duang, C. L., 2000, "A Design Method of Thermoelectric Cooler, Int. J. Refrigeration, Vol. 23, pp. 208-218. https://doi.org/10.1016/S0140-7007(99)00046-8
  9. Aleksandr, S.K., John, C.B., Saeid, G., Norbert, B.E., Richard, A.B., David, F. and Mike, M. 2001, "Thermoelectric Development ay Hi-Z Technology," Technical Paper.

Cited by

  1. Study on Application of Cooling System of Automotive Engine for Thermoelectric Generator vol.25, pp.4, 2016, https://doi.org/10.5855/ENERGY.2016.25.4.133