• Title/Summary/Keyword: thermoelectric

검색결과 886건 처리시간 0.023초

유연한 열전소재를 이용한 에너지 하베스터 연구개발 동향 (Recent Progress in Energy Harvesters Based on Flexible Thermoelectric Materials)

  • 박종민;김서하;나유진;박귀일
    • 한국전기전자재료학회논문지
    • /
    • 제35권2호
    • /
    • pp.119-128
    • /
    • 2022
  • Recent advancement of Internet of Things (IoT) and energy harvesting technology enable realization of flexible thermoelectric energy harvester (f-TEH), with technological prowess for use in biomedical monitoring system integrated applications. To expand a flexible thermoelectric energy harvesting platform, the f-TEH must be required for optimized flexible thermoelectric materials and device structure. In response to these demands related to thermoelectric energy harvesting, many research groups have investigated various f-TEHs applied as a power source for wearable electronics. As a key member of the f-TEH, film-based f-TEHs possess significant applicability in research to realize self-powered wearable electronics, owing to their excellent flexibility, low thermal conductivity, and convenient fabrication process. Thus, based on the rapid growth of thermoelectric film technology, this review aims to overview comprehensively the f-TEH made of various inorganic/organic thermoelectric materials including developed fabrication methods, high thermoelectric performance, and wide-range applications.

로터리형 원자층 증착법을 이용한 Bi-Te계 소결체의 열전 성능 개선 (Thermoelectric Performance Enhancement of Sintered Bi-Te Pellets by Rotary-type Atomic Layer Deposition)

  • 정명준;박지영;은수민;최병준
    • 한국분말재료학회지
    • /
    • 제30권2호
    • /
    • pp.130-139
    • /
    • 2023
  • Thermoelectric materials and devices are energy-harvesting devices that can effectively recycle waste heat into electricity. Thermoelectric power generation is widely used in factories, engines, and even in human bodies as they continuously generate heat. However, thermoelectric elements exhibit poor performance and low energy efficiency; research is being conducted to find new materials or improve the thermoelectric performance of existing materials, that is, by ensuring a high figure-of-merit (zT) value. For increasing zT, higher σ (electrical conductivity) and S (Seebeck coefficient) and a lower κ (thermal conductivity) are required. Here, interface engineering by atomic layer deposition (ALD) is used to increase zT of n-type BiTeSe (BTS) thermoelectric powders. ALD of the BTS powders is performed in a rotary-type ALD reactor, and 40 to 100 ALD cycles of ZnO thin films are conducted at 100℃. The physical and chemical properties and thermoelectric performance of the ALD-coated BTS powders and pellets are characterized. It is revealed that electrical conductivity and thermal conductivity are decoupled, and thus, zT of ALD-coated BTS pellets is increased by more than 60% compared to that of the uncoated BTS pellets. This result can be utilized in a novel method for improving the thermoelectric efficiency in materials processing.

Neutron-irradiated effect on the thermoelectric properties of Bi2Te3-based thermoelectric leg

  • Huanyu Zhao;Kai Liu;Zhiheng Xu;Yunpeng Liu;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3080-3087
    • /
    • 2023
  • Thermoelectric (TE) materials working in radioisotope thermoelectric generators are irradiated by neutrons throughout its service; thus, investigating the neutron irradiation stability of TE devices is necessary. Herein, the influence of neutron irradiation with fluences of 4.56 × 1010 and 1 × 1013 n/cm2 by pulsed neutron reactor on the electrical and thermal transport properties of n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thermoelectric alloys prepared by cold-pressing and molding is investigated. After neutron irradiation, the properties of thermoelectric materials fluctuate, which is related to the material type and irradiation fluence. Different from p-type thermoelectric materials, neutron irradiation has a positive effect on n-type Bi2Te2.7Se0.3 materials. This result might be due to the increase of carrier mobility and the optimization of electrical conductivity. Afterward, the effects of p-type and n-type TE devices with different treatments on the output performance of TE devices are further discussed. The positive and negative effects caused by irradiation can cancel each other to a certain extent. For TE devices paired with p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thermoelectric legs, the generated power and conversion efficiency are stable after neutron irradiation.

소규모 산업 폐열회수용 열전발전시스템의 출력 특성에 관한 실험적 연구 (Experimental Study of Power Generation Performance of Small-Scale Thermoelectric System)

  • 정재훈;김우철;이진호;유태우
    • 대한기계학회논문집B
    • /
    • 제34권4호
    • /
    • pp.383-390
    • /
    • 2010
  • 본 연구에서는 폐열 회수를 위한 열전 발전 시스템을 구성하였다. 열전 모듈은 스테인레스 스틸덕트 내부에 부착되고, 뜨거운 공기를 불어넣는 장치가 덕트의 입구에 마주한 형태를 취하였다. 이 때 고온부의 온도가 균일한 상태에서 낼 수 있는 최대 파워를 구해내었다. 결과적으로 모듈에 가해지는 최적화된 압력이 있었다. 또한 열전 발전의 성능을 열전 모듈의 저온부의 열 싱크에 의하여 결정되었다. 자연대류 형식의 열 싱크에서 낼 수 있는 파워가 5배 가량 차이가 났다.

열전모듈을 이용한 냉방기의 최적 운전조건에 관한 실험적 연구 (An Experimental Study on the Optimal Operation Condition of an Air-Cooler using Thermoelectric Modules)

  • 황준;강병하
    • 설비공학논문집
    • /
    • 제18권1호
    • /
    • pp.66-72
    • /
    • 2006
  • This article presents the optimal operation of an air conditioner using thermoelectric modules. A prototype of air conditioner using four thermoelectric modules has been designed and built. The system performance with evaporative cooling for hot side of the module are studied in detail for several operating parameters, such as input power to the thermoelectric module, fans and pump. It is found that the optimal input voltage to the thermoelectric module and pump is selected for the best system performance based on the cooling capacity and the COP at a given operating condition. It is also found that both the cooling capacity and COP of a system is increased with an increase in the input power to fans. The cooling performance could be improved when the ambient temperature is increased and the relative humidity is decreased since the evaporative cooling at the hot side has been increased.

열전모듈을 이용한 에어컨의 방열부 냉각특성에 대한 연구 (Cooling Characteristics at Hot Side of the Thermoelectric Module for an Air Conditioner)

  • 김서영;강병하;장혁재;김석현
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.214-220
    • /
    • 2002
  • A small air conditioner using thermoelectric module has been designed and built. Three types of cooling methods, such as air cooling, closed-loop water cooling, and evaporative cooling, for hot side of thermoelectric module have been investigated. Among three types of cooling method, the evaporative cooling method is seen to be the most effective to achieve the steady state operation of a thermoelectric air conditioner The system performance with evaporative cooling method are also studied in detail for several oprating parameters, such as input power to the thermoelectric module, water or air flow rate at the hot side, and air flow rate at the cold side. The results obtained indicate that the cooling capacity of a system is increased with an increase in the input power to the thermoelectric module while the system COP is decreased. It is also found that the optimal air flow rate as well as water flow rate at the hot side is needed for the best system performance at a liven operating condition. Both the system COP and cooling capacity are increased as the air flow rate at cold side is increased.

Bismuth Telluride 박막의 열전특성 개선을 위한 급속 열처리효과 (Improvement of Thermoelectric Properties of Bismuth Telluride Thin Films using Rapid Thermal Processing)

  • 김동호;이건환
    • 한국재료학회지
    • /
    • 제16권5호
    • /
    • pp.292-296
    • /
    • 2006
  • Effects of rapid thermal annealing of bismuth telluride thin films on their thermoelectric properties were investigated. Films with four different compositions were elaborated by co-sputtering of Bi and Te targets. Rapid thermal treatments in range of $300{\sim}400^{\circ}C$ were carried out during 10 minutes under the reducing atmosphere (Ar with 10% $H_2$). As the temperature of thermal treatment increased, carrier concentrations of films decreased while their mobilities increased. These changes were clearly observed for the films close to the stoichiometric composition. Rapid thermal treatment was found to be effective in improving the thermoelectric properties of $Bi_2Te_3$ films. Recrystallization of $Bi_2Te_3$ phase has caused the enhancement of thermoelectric properties, along with the decrease of the carrier concentration. Maximum values of Seebeck coefficient and power factor were obtained for the films treated at $400^{\circ}C$ (about $-128{\mu}V/K$ and $9{\times}10^{-4}\;W/K^2m$, respectively). With further higher temperature ($500^{\circ}C$), thermoelectric properties deteriorated due to the evaporation of Te element and subsequent disruption of film's structure.

산화물 환원공정에 의한 Bi-Sb-Te계 열전분말 합성 (Synthesis of Bi-Sb-Te-based Thermoelectric Powder by an Oxide-reduction Process)

  • 이길근;김성현;하국현;김경태
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.336-341
    • /
    • 2010
  • The present study focused on the synthesis of Bi-Sb-Te-based thermoelectric powder by an oxidereduction process. The phase structure, particle size of the synthesized powders were analyzed using XRD and SEM. The synthesized powder was sintered by the spark plasma sintering method. The thermoelectric property of the sintered body was evaluated by measuring the Seebeck coefficient and specific electric resistivity. The $Bi_{0.5}Sb_{1.5}Te_3$ powder had been synthesized by a combination of mechanical milling, calcination and reduction processes using mixture of $Bi_2O_3$, $Sb_2O_3$ and $TeO_2$ powders. The sintered body of the $Bi_{0.5}Sb_{1.5}Te_3$ powder synthesized by an oxide-reduction process showed p-type thermoelectric characteristics, even though it had lower thermoelectric properties than the sintered body of the $Bi_{0.5}Sb_{1.5}Te_3$ thermoelectric powder synthesized by the conventional melting-crushing method.

P형 열전분말의 수소환원처리가 상온열전특성에 미치는 영향 (Effect of Hydrogen Reduction Treatment on Room-Temperature Thermoelectric Performance of p-type Thermoelectric Powders)

  • 김경태;장경미;하국현
    • 한국분말재료학회지
    • /
    • 제17권2호
    • /
    • pp.136-141
    • /
    • 2010
  • Bismuth-telluride based $(Bi_{0.2}Sb_{0.8})_2Te_3$ thermoelectric powders were fabricated by two-step planetary milling process which produces bimodal size distribution ranging $400\;nm\;{\sim}\;2\;{\mu}m$. The powders were reduced in hydrogen atmosphere to minimize oxygen contents which cause degradation of thermoelectric performance by decreasing electrical conductivity. Oxygen contents were decreased from 0.48% to 0.25% by the reduction process. In this study, both the as-synthesized and the reduced powders were consolidated by the spark plasma sintering process at $350^{\circ}C$ for 10 min at the heating rate of $100^{\circ}C/min$ and then their thermoelectric properties were investigated. The sintered samples using the reduced p-type thermoelectric powders show 15% lower specific electrical resistivity ($0.8\;m{\Omega}{\cdot}cm$) than those of the as-synthesized powders while Seebeck coefficient and thermal conductivity do not change a lot. The results confirmed that ZT value of thermoelectric performance at room temperature was improved by 15% due to high electric conductivity caused by the controlled oxygen contents present at bismuth telluride materials.

Mg2Si0.6Sn0.4 열전재료의 열전특성과 미세조직 (Thermoelectric properties and microstructures of Mg2Si0.6Sn0.4-based thermoelectric materials)

  • 장정인;류병기;이지은;박수동;이호성
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.53-53
    • /
    • 2018
  • Thermoelectric materials can convert directly waste heat to electricity and vice versa. The improvement of the thermoelectric efficiency strongly depends on the dimensionless figure of merit, $ZT=S^2{\sigma}T/{\kappa}$, where S is the Seebeck coefficient, ${\sigma}$ is the electrical conductivity, T is the absolute temperature, and ${\kappa}$ is the thermal conductivity. The thermal conductivity consists of the electronic contribution (${\kappa}_e$) and phonon contribution (${\kappa}_{ph}$). It is very challenge to increase the power factor, $S^2{\sigma}$ and to reduce the thermal conductivity simultaneously because the power factor and electronic thermal conductivity are coupled. One strategy is to decrease the phonon thermal conductivity. The phonon thermal conductivity can be decreased by controlling the grain size and structural defects such as dislocations and twinning. In order to achieve enhancements in thermoelectric efficiency, microstructures that can form numerous interfaces have been investigated intensively for controlling the transport of charge carriers and heat carrying phonons. In this presentation, we report the heterogeneous microstructure of $Mg_2Si_{0.6}Sn_{0.4}$ thermoelectric materials and investigation of its influence on thermoelectric properties.

  • PDF