• 제목/요약/키워드: thermoelasticity theory

검색결과 67건 처리시간 0.019초

Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.201-220
    • /
    • 2016
  • A general model of equations of the two-temperature theory of generalized thermoelasticity is applied to study the wave propagation in a fiber-reinforced magneto-thermoelastic medium in the context of the three-phase-lag model and Green-Naghdi theory without energy dissipation. The material is a homogeneous isotropic elastic half-space. The exact expression of the displacement components, force stresses, thermodynamic temperature and conductive temperature is obtained by using normal mode analysis. The variations of the considered variables with the horizontal distance are illustrated graphically. Comparisons are made with the results of the two theories in the absence and presence of a magnetic field as well as a two-temperature parameter. A comparison is also made between the results of the two theories in the absence and presence of reinforcement.

Propagation of plane waves in an orthotropic magneto-thermodiffusive rotating half-space

  • Sheokand, Suresh Kumar;Kumar, Rajeshm;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.455-468
    • /
    • 2019
  • The present article is aimed at studying the reflection phenomena of plane waves in a homogeneous, orthotropic, initially stressed magneto-thermoelastic rotating medium with diffusion. The enuciation is applied to generalized thermoelasticity based on Lord-Shulman theory. There exist four coupled waves, namely, quasi-longitudinal P-wave (qP), quasi-longitudinal thermal wave (qT), quasi-longitudinal mass diffusive wave (qMD) and quasi-transverse wave (qSV) in the medium. The amplitude and energy ratios for these reflected waves are derived and the numerical computations have been carried out with the help of MATLAB programming. The effects of rotation, initial stress, magnetic and diffusion parameters on the amplitude ratios are depicted graphically. The expressions of energy ratios have also been obtained in explicit form and are shown graphically as functions of angle of incidence. It has been verified that during reflection phenomena, the sum of energy ratios is equal to unity at each angle of incidence. Effect of anisotropy is also depicted on velocities of various reflected waves.

Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium

  • Jain, Kavita;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.215-226
    • /
    • 2018
  • In this article, the theory of fractional order two temperature generalized thermoelasticity is employed to study the wave propagation in a fiber reinforced anisotropic thermoelastic half space in the presence of moving internal heat source. The whole space is assumed to be under the influence of gravity. The surface of the half-space is subjected to an inclined load. Laplace and Fourier transform techniques are employed to solve the problem. Expressions for different field variables in the physical domain are derived by the application of numerical inversion technique. Physical fields are presented graphically to study the effects of gravity and heat source. Effects of time, reinforcement, fractional parameter and inclination of load have also been reported. Results of some earlier workers have been deduced from the present analysis.

A variational asymptotic approach for thermoelastic analysis of composite beams

  • Wang, Qi;Yu, Wenbin
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.93-123
    • /
    • 2014
  • A variational asymptotic composite beam model has been developed for thermoelastic analysis. Composite beams, including sandwich structure and laminates, under different boundary conditions are examined. Previously developed beam model, which is based on variational-asymptotic method, is extended to incorporate temperature-dependent materials experiencing large temperature changes. The recovery relations have been derived so that the temperatures, heat fluxes, stresses, and strains can be recovered over the cross-section. The present theory is implemented into the computer program VABS (Variational Asymptotic Beam Sectional analysis). Numerical results are compared with the 3D analysis for the purpose of demonstrating advantages of the present theory and use of VABS.

Thermoelectric viscoelastic materials with memory-dependent derivative

  • Ezzat, Magdy A.;El Karamany, Ahmed S.;El-Bary, A.A.
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.539-551
    • /
    • 2017
  • A mathematical model of electro-thermoelasticity has been constructed in the context of a new consideration of heat conduction with memory-dependent derivative. The governing coupled equations with time-delay and kernel function, which can be chosen freely according to the necessity of applications, are applied to several concrete problems. The exact solutions for all fields are obtained in the Laplace transform domain for each problem. According to the numerical results and its graphs, conclusion about the proposed model has been constructed. The predictions of the theory are discussed and compared with dynamic classical coupled theory. The result provides a motivation to investigate conducting thermoelectric viscoelastic materials as a new class of applicable materials.

Dual-phase-lag model on microstretch thermoelastic medium with diffusion under the influence of gravity and laser pulse

  • Othman, Mohamed I.A.;Abd-Elaziz, Elsayed M.;Mohamed, Ibrahim E.A.
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.133-144
    • /
    • 2020
  • This investigation is to study the effect of gravitational field and diffusion on a microstretch thermoelastic medium heating by a non-Gaussian laser beam. The problem was studied in the context of the dual-phase-lag model. The normal mode analysis is used to solve the problem to obtain the exact expressions for the non-dimensional displacement components, the micro-rotation, the stresses, and the temperature distribution. The effect of time parameter, heat flux parameter and gravity response of three theories of thermoelasticity i.e. dual-phase-lag model (DPL), Lord and Shulman theory (L-S) and coupled theory (CT) on these quantities have been depicted graphically for a particular model.

Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field

  • Abd-Alla, A.M.;Abo-Dahab, S.M.;Bayones, F.S.
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.277-296
    • /
    • 2015
  • The objective of this paper is to investigate the surface waves in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field. The theory of generalized surface waves has firstly developed and then it has been employed to investigate particular cases of waves, viz., Stoneley waves, Rayleigh waves and Love waves. The analytical expressions for displacement components, force stress and temperature distribution are obtained in the physical domain by using the harmonic vibrations. The wave velocity equations have been obtained in different cases. The numerical results are given and presented graphically in Green-Lindsay and Lord-Shulman theory of thermoelasticity. Comparison was made with the results obtained in the presence and absence of gravity, anisotropy, relaxation times and parameters for fibrereinforced of the material medium. The results indicate that the effect of gravity, anisotropy, relaxation times and parameters for fibre-reinforced of the material medium are very pronounced.

A modified couple-stress magneto-thermoelastic solid with microtemperatures and gravity field

  • Samia M. Said;Elsayed M. Abd-Elaziz;Mohamed I.A. Othman
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.475-485
    • /
    • 2023
  • The present study deals with wave propagation in a modified couple-stress generalized thermoelastic solid under the effect of gravity and magnetic field. The problem is solved by a refined microtemperatures multi-phase-lags thermoelastic theory. The Fourier series and Laplace transforms will be used to obtain the general solution for any set of boundary conditions. Some comparisons have been shown in figures to estimate the effects of the gravity field, the magnetic field, and different theories of thermoelasticity in the presence of the hall current effect on all the physical quantities. Some particular cases of special interest have been deduced from the present investigation.

Interactions in a transversely isotropic new modified couple stress thermoelastic thick circular plate with two temperature theory

  • Parveen Lata;Harpreet Kaur
    • Coupled systems mechanics
    • /
    • 제12권3호
    • /
    • pp.261-276
    • /
    • 2023
  • This article is an application of new modified couple stress thermoelasticity without energy dissipation in association with two-temperature theory. The upper and lower surfaces of the plate are subjected to an axisymmetric heat supply. The solution is found by using Laplace and Hankel transform techniques. The analytical expressions of displacement components, conductive temperature, stress components and couple stress are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect of two temperature is shown on the various components.

Influence of gravity, locality, and rotation on thermoelastic half-space via dual model

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.375-381
    • /
    • 2024
  • In this paper, Eringen's nonlocal thermoelasticity is constructed to study wave propagation in a rotating two-temperature thermoelastic half-space. The problem is applied in the context of the dual-phase-lag (Dual) model, coupled theory (CD), and Lord-Shulman (L-S) theory. Using suitable non-dimensional fields, the harmonic wave analysis is used to solve the problem. Comparisons are carried with the numerical values predicted in the absence and presence of the gravity field, a nonlocal parameter as well as rotation. The present study is valuable for the analysis of nonlocal thermoelastic problems under the influence of the gravity field, mechanical force, and rotation.