References
- Abbas, I., Hobiny, A. and Marin, M. (2020), "Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity", J. Taibah Univ. Sci., 14(1), 1369-1376. https://doi.org/10.1080/16583655.2020.1824465.
- Abbas, I., Hobiny, A., Vlase, S. and Marin, M. (2022), "Generalized thermoelastic interaction in a half-space under a nonlocal thermoelastic model", Math., 10(13), 2168. https://doi.org/10.3390/math10132168.
- Abbas, I.A. and Zenkour, A.M. (2014), "Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating", J. Comput. Theor. Nanosci., 11(3), 642-645. http://doi.org/10.1166/jctn.2014.3407.
- Acharya, D.P. and Mondal, A. (2002), "Propagation of Rayleigh surface waves with small wavelengths in nonlocal visco-elastic solids", Sadhana, 27(12), 605-612. https://doi.org/10.1007/BF02703353.
- Alharbi, A.M., Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2022), "Fiber-reinforced micropolar thermoelastic rotating solid with voids and two-temperature in the context of memory-dependent derivative", Geomech. Eng., 28(4), 347-358. https://doi.org/10.12989/gae.2022.28.4.347.
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27, 240-253. https://doi.org/10.1063/1.1722351.
- Biswas, S. (2020), "Fundamental solution of steady oscillations equations in nonlocal thermoelastic medium with voids", J. Therm. Stress., 43(3), 284-304. https://doi.org/10.1080/01495739.2019.1699482.
- Caputo, M. and Mainardi, F. (1971a), "A new dissipation model based on memory mechanism", Pure Appl. Geophys., 91(12), 134-147. https://doi.org/10.1007/BF00879562.
- Caputo, M. and Mainardi, F. (1971b), "Linear models of dissipation in anelastic solids", Rivista del Nuovo Cimento (Ser. II), 1(4), 161-198. https://doi.org/10.1007/BF02820620.
- Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (1974), "Theory of nonlocal thermoelasticity", Int. J. Eng. Sci., 12(12), 1063-1077. https://doi.org/10.1016/0020-7225(74)90033-0.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York.
- Eringen, A.C. and Edelen, D.G.B. (1972b), "On nonlocal elastic", Int. J. Eng. Sci., 10 (3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2(3), 1-7. https://doi.org/10.1007/BF00045689.
- Hobiny, A., Abbas, I., Alshehri, H. and Marin, M. (2022), "Analytical solutions of nonlocal thermoelastic Interaction on semi-infinite mediums induced by ramp-type heating", Symmetry, 14(5), 864. https://doi.org/10.3390/sym14050864.
- Kaliski, S., Rymarz, Cz. and Sobczyk, K. (1992), "Surface waves in nonlocal media and in media with a microstructure", Stud. Appl. Mech.-B: Wave., 30, 261-270. https://doi.org/10.1016/B978-0-444-98690-0.50031-6
- Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
- Khurana, A. and Tomar, S.K. (2017), "Rayleigh-type waves in nonlocal micropolar solid half-space", Ultrasonic., 75, 162-168. https://doi.org/10.1016/j.ultras.2016.09.005.
- Lata, P. and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
- Lata, P., Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer", Steel Compos. Struct., 35(3), 343-351. http://doi.org/10.12989/scs.2020.35.3.343.
- Lord, H.W. and Shulman, Y.A. (1967), "Generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Marin, M., Hobiny, A. and Abbas, I. (2021), "The effects of fractional time derivatives in poro-thermoelastic materials using finite element method", Math., 9(14), Art. No. 1606. https://doi.org/10.3390/math9141606.
- Marin, M., Seadawy, A., Vlase, S. and Chirila, A. (2022), "On mixed problem in thermoelasticity of type III for Cosserat media", J. Taibah Univ. Sci., 16(1), 1264-1274. https://doi.org/10.1080/16583655.2022.2160290.
- Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Othman, M.I.A., Zidan, M.E.M. and Mohamed, I.E.A. (2021), "Dual-phase-lag model on thermo-microstretch elastic solid under the effect of initial stress and temperature-dependent", Steel Compos. Struct., 38(4), 355-363. https://doi.org/10.12989/scs.2021.38.4.355.
- Ozisik, M.N. and Tzou, D.Y. (1994), "On the wave theory in heat conduction", J. Heat Transf., 116(3), 526-535. https://doi.org/10.1115/1.2910903.
- RoyChoudhuri, S.K. (2007), "One-dimensional thermoelastic waves in elastic half-space with dual phase lag effects", J. Mech. Mater. Struct., 2(3), 489-503. https://doi.org/10.2140/jomms.2007.2.489.
- Roy, I., Acharya, D.P. and Acharya, S. (2015), "Rayleigh wave in a rotating nonlocal magneto-elastic half-plane", J. Theor. Appl. Mech., 45(4), 61-78. https://doi.org/10.1515/jtam-2015-0024.
- Said, S.M. (2016), "Influence of gravity on generalized magneto-thermoelastic medium for three-phase-lag model", J. Comput. Appl. Math., 291, 142-157. http://doi.org/10.1016/j.cam.2014.12.016.
- Said, S.M. (2020), "Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity", Appl. Math. Mech., 41(5), 819-832. https://doi.org/10.1007/s10483-020-2603-9.
- Said, S.M. (2022), "A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field", Geomech. Eng., 31(2), 159-166. https://doi.org/10.12989/gae.2022.31.2.159.
- Said, S.M. (2023a), "A study on the frame of a memory-dependent derivative in a micropolar thermoelastic medium under the effect of the variable thermal conductivity", Mech. Bas. Des. Struct. Mach., 51(2), 665-681. https://doi.org/10.1080/15397734.2020.1851255.
- Said, S.M. (2023b), "A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach", Geomech. Eng., 32(2), 137-144. https://doi.org/10.12989/gae.2023.32.2.137
- Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31(1), 115-125. https://doi.org/10.1090/qam/99708
- Singh, B. (2013), "Wave propagation in dual-phase-lag anisotropic thermoelasticity", Continuum Mech. Thermodyn., 25(9), 675-683. https://doi.org/10.1007/s00161-012-0261-x.
- Singh, B. (2021b), "Rayleigh-type surface waves in a nonlocal thermoelastic solid half space with voids", Wave. Random Complex Media, 31(6), 2103-2114. https://doi.org/10.1080/17455030.2020.1721612.
- Singh, B. and Bijarnia, R. (2021a), "Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space", Struct. Eng. Mech., 77(4), 473-479. https://doi.org/10.12989/sem.2021.77.4.473.
- Singh, B., Sangwan, A. and Singh, J. (2022), "Nonlocal effects on Rayleigh-type surface wave in a micropolar piezoelectric medium", Vietnam J. Mech., 44(1), 1-13. https://doi.org/10.15625/0866-7136/16539.
- Sur, A. and Kanoria, M. (2018), "Thermoelastic interaction in a three-dimensional layered sandwich structure", Mech. Adv. Compos. Struct., 5, 187-198. http://doi.org/10.22075/MACS.2018.14201.1141.
- Tzou, D.Y. (1995a), "Experimental support for the lagging behavior in heat propagation", J. Thermophys. Heat Transf., 9(4), 686-693. https://doi.org/10.2514/3.725.
- Tzou, D.Y. (1995b), "A unified field approach for heat conduction from macro to micro-scales", ASME J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
- Youssef, H.M. (2005a), "Theory of two-temperature generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101.
- Youssef, H.M. (2005b), "State-space approach on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp type heating", Can. Appl. Math. Quart., 13(4), 369-390.