• Title/Summary/Keyword: thermodynamic equations

Search Result 154, Processing Time 0.021 seconds

A Study on Thermodynamic Properties of Ethylene Gas Hydrate

  • Lim, Gye-Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E1
    • /
    • pp.10-15
    • /
    • 2007
  • The gas hydrates are probably most sensitive to climate change since they are stable only under specific conditions of high pressure and low temperature. One of the main factors responsible for formation of gas hydrates is the saturation of the gases with water vapor. Quantitative phase equilibrium data and understanding of the roles of water component in the phase behavior of the heterogeneous water-hydrocarbon-hydrate mixture are of importance and of engineering value. In this study, the water content of ethylene gas in equilibrium with hydrate and water phases were analyzed by theoretical and experimental methods at temperatures between 274.15 up to 291.75 K and pressures between 593.99 to 8,443.18 kPa. The experimental and theoretical enhancement factors (EF) for the water content of ethylene gas and the fugacity coefficients of water and ethylene in gas phase were determined and compared with each other over the entire range of pressure carried out in this experiment. In order to get the theoretical enhancement factors, the modified Redlich-Kwong equation of state was used. The Peng-Robinson equations and modified Redlich-Kwong equations of state were used to get the fugacity coefficients for ethylene and water in the gas phase. The results predicted by both equations agree very well with the experimental values for the fugacity coefficients of the compressed ethylene gas containing small amount of water, whereas, those of water vapor do not in the ethylene rich gas at high temperature for hydrate formation locus.

Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell

  • Dai, Zuocai;Jiang, Zhiyong;Zhang, Liang;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.175-189
    • /
    • 2021
  • In this article, frequency characteristics, and sensitivity analysis of a size-dependent laminated composite cylindrical nanoshell under bi-directional thermal loading using Nonlocal Strain-stress Gradient Theory (NSGT) are presented. The governing equations of the laminated composite cylindrical nanoshell in thermal environment are developed using Hamilton's principle. The thermodynamic equations of the laminated cylindrical nanoshell are obtained using First-order Shear Deformation Theory (FSDT) and Fourier-expansion based Generalized Differential Quadrature element Method (FGDQM) is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The novelty of the current study is to consider the effects of bi-directional temperature loading and sensitivity parameter on the critical temperature and frequency characteristics of the laminated composite nanostructure. Apart from semi-numerical solution, a finite element model was presented using the finite element package to simulate the response of the laminated cylindrical shell. The results created from finite element simulation illustrates a close agreement with the semi-numerical method results. Finally, the influences of temperature difference, ply angle, length scale and nonlocal parameters on the critical temperature, sensitivity, and frequency of the laminated composite nanostructure are investigated, in details.

Study on Governing Equations for Modeling Electrolytic Reduction Cell (전해환원 셀 모델링을 위한 지배 방정식 연구)

  • Kim, Ki-Sub;Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.245-251
    • /
    • 2014
  • Pyroprocess for treating spent nuclear fuels has been developed based on electrochemical principles. Process simulation is one of the important methods for process development and experimental data analysis and it is also a necessary approach for pyroprocessing. To date, process simulation of pyroprocessing has been focused on electrorefining and there have been not so many investigations on electrolytic reduction. Electrolytic reduction, unlike electrorefining, includes specific features of gas evolution and porous electrode and, thus, different equations should be considered for developing a model for the process. This study summarized required concepts and equations for electrolytic reduction model development from thermodynamic, mass transport, and reaction kinetics theories which are necessitated for analyzing an electrochemical cell. An electrolytic reduction cell was divided and equations for each section were listed and, then, boundary conditions for connecting the sections were indicated. It is expected that those equations would be used as a basis to develop a simulation model for the future and applied to determine parameters associated with experimental data.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiCl-$CaCl_2-Zn(NO_3)_2$ Solution at Solar Evaporator Heating (LiCl-$CaCl_2-Zn(NO_3)_2$ 수용액을 사용하는 흡수 2중효용 시스템에서 태양열을 증발기 열원으로 사용하는 난방기의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.87-94
    • /
    • 2007
  • In this paper, with water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture which utilizes solar energy at the evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture than for the water-LiBr pair, and FR is lower for the former.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr- LiSCN Solution As $20{\sim}40^{\circ}C$ Range Solar Evaporator Heating (태양열을 증발기 열원으로 사용($20{\sim}40^{\circ}C$범위)하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.73-81
    • /
    • 2006
  • In this paper, with water-LiBr-LiSCN mixture which utilizes solar energy as mid temperature range evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

Cationic Dye (Methylene Blue) Removal from Aqueous Solution by Montmorillonite

  • Fil, Baybars Ali;Ozmetin, Cengiz;Korkmaz, Mustafa
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3184-3190
    • /
    • 2012
  • Color impurity in industrial effluents pose a significant risk to human health and the environment, so much effort has been expended to degrade them using various methods, including the use of clay minerals as adsorbent. The purpose of this study was to advance understanding of the mechanisms for the removal of methylene blue (MB) from aqueous solutions onto montmorillonite as an adsorbent. Preliminary experiments showed that montmorillonite was effective for this purpose and adsorption equilibrium could be reached in about 24 h. Adsorption capacity of the clay decreased with increase in temperature and ionic strength, and increased with in pH. The fitness of equilibrium data to common isotherm equations such as the Langmuir, Freundlich, Elovich, Temkin and Dubinin-Radushkevich were tested. The Langmuir equation fitted to equilibrium data better than all tested isotherm models. Thermodynamic activation parameters such as ${\Delta}G^0$, ${\Delta}S^0$ and ${\Delta}H^0$ were also calculated and results were evaluated. As result montmorillonite clay was found as effective low cost adsorbent for removal of cationic dyes from waste waters.

Computer Simulation of Automobile Air-Conditioners (자동차 에어컨 컴퓨터 시뮬레이션)

  • Kim, H.J.;Jung, D.S.;Kim, C.B.;Kim, K.H.;Kang, J.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.240-253
    • /
    • 1996
  • The refrigeration cycle of automobile air-conditioners is simulated in an effort to provide a computational tool for optimum thermodynamic design. In the simulation, thermodynamic and heat transfer analysis was performed for the four major components : evaporator, condenser, compressor, and expansion valve. Effectiveness-NTU method was used for modeling both evaporator and condenser. The evaporator was divied into many subgrids and simultaneous cooling and dehumidifying analysis was performed for each grid to predict the performance accurately. Blance equations were used to model the compressor instead of using the compressor map. The performance of each component was checked against the measured data with CFC-12. Then, all the components were combined to yield the total system performance. Predicted cycle points were compared against the measured data with HFC-134a and the deviation was found to be less than 5% for all data. Finally, the system model was used to predict the performance of CFC-12 and HFC-134a for comparison. The results were very reasonable as compared to the trend deduced from the measured data.

  • PDF

Kinetics and Thermodynamic Properties Related to the Adsorption of Copper and Zinc onto Zeolite Synthesized from Coal Fly Ash

  • Lee, Chang-Han;Ambrosia, Matthew Stanley
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1327-1335
    • /
    • 2013
  • Na-A zeolite (Z-Cl) was synthesized from coal fly ash, which is a byproduct of coal combustion for the generation of electricity. The adsorption of $Cu^{2+}$ and $Zn^{2+}ions$ onto Z-C1 was investigated via batch tests over a range of temperatures (303.15 to 323.15 K). The resultant experimental equilibrium data were compared to theoretical values calculated using model equations. With these results, the kinetics and equilibrium parameters of adsorption were calculated using Lagergren and Langmuir-Freundlich models. The adsorption kinetics revealed that the pseudo second-order kinetic mechanism is predominant. The maximum adsorption capacity ($q_{max}$) values were 139.0-197.9 mg $Zn^{2+}$/g and 75.0-105.1 mg $Cu^{2+}/g$. Calculation of the thermodynamic properties revealed that the absorption reactions for both $Cu^{2+}$ and $Zn^{2+}$ were spontaneous and endothermic. Collectively, these results suggest that the synthesized zeolite, Z-C1, can potentially be used as an adsorbent for metal ion recovery during the treatment of industrial wastewater at high temperatures.

Theoretical Studies on Nitramine Explosives with -NH2 and -F Groups

  • Zhao, Guo Zheng;Lu, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1913-1918
    • /
    • 2012
  • The nitramine explosives with $-NH_2$ and -F groups were optimized to obtain their molecular geometries and electronic structures at DFT-B3LYP/6-31+G(d) level. The theoretical molecular density (${\rho}$), heat of formation (HOF), detonation velocity ($D$) and detonation pressure ($P$), estimated using Kamlet-Jacobs equations, showed that the detonation properties of these compounds were excellent. Based on the frequencies scaled by 0.96 and the principle of statistic thermodynamics, the thermodynamic properties were evaluated, which were respectively related with the temperature. The simulation results reveal that 1,3,5,7-tetranitro-1,3,5,7-tetrazocan-2-amine (molecule B1) performs similarly to the famous explosive HMX, and 2-fluoro-1,3,5-trinitro-1,3,5-triazinane (molecule C1) and 2-fluoro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (molecule D1) outperform HMX. According to the quantitative standard of energetics and stability as an HEDC (high energy density compound), molecules C1 and D1 essentially satisfy this requirement. These results provide basic information for molecular design of novel high energetic density compounds.

Underwater striling engine design with modified one-dimensional model

  • Li, Daijin;Qin, Kan;Luo, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.526-539
    • /
    • 2015
  • Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.