• 제목/요약/키워드: thermodynamic characteristics

Search Result 357, Processing Time 0.023 seconds

A study on the thermodynamic analysis of combustion characteristics of diesel engine (디이젤機關 燃燒特性의 熱力學的 解析에 관한 硏究)

  • 이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.215-222
    • /
    • 1986
  • This paper presents the results of investigation, the aim of which was to predict theoretically the processes of thermodynamic cycle of M-combustion chamber type diesel engine. The combustion characteristics in cylinder are evaluated from the energy equation for an thermodynamic system in engine cylinder. In order to predict the combustion pressure in cylinder, the engine is divided in various control volumes. The simulation results of combustion characteristics show that the comparison of computed and measured values brings about the good coincidence.

Thermodynamic Characteristics Associated with Localized Torrential Rainfall Events in the Middle West Region of Korean Peninsula (한반도 중서부 국지성 집중호우와 관련된 열역학적 특성)

  • Jung, Sueng-Pil;Kwon, Tae-Yong;Han, Sang-Ok
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.457-470
    • /
    • 2014
  • Thermodynamic conditions related with localized torrential rainfall in the middle west region of Korean peninsula are examined using radar rain rate and radiosonde observational data. Localized torrential rainfall events in this study are defined by three criteria base on 1) any one of Automated Synoptic Observing System (ASOS) hourly rainfall exceeds $30mmhr^{-1}$ around Osan, 2) the rain (> $1mmhr^{-1}$) area estimated from radar reflectivity is less than $20,000km^2$, and 3) the rain (> $10mmhr^{-1}$) cell is detected clearly and duration is short than 24 hr. As a result, 13 cases were selected during the summer season of 10 years (2004-13). It was found that the duration, the maximum rain area, and the maximum volumetric rain rate of convective cells (> $30mmhr^{-1}$) are less than 9hr, smaller than $1,000km^2$, and $15,000{\sim}60,000m^3s^{-1}$ in these cases. And a majority of cases shows the following thermodynamic characteristics: 1) Convective Available Potential Energy (CAPE) > $800Jkg^{-1}$, 2) Convective Inhibition (CIN) < $40Jkg^{-1}$, 3) Total Precipitable Water (TPW) ${\approx}$ 55 mm, and 4) Storm Relative Helicity (SRH) < $120m^2s^{-2}$. These cases mostly occurred in the afternoon. These thermodynamic conditions indicated that these cases were caused by strong atmospheric instability, lifting to overcome CIN, and sufficient moisture. The localized torrential rainfall occurred with deep moisture convection result from the instability caused by convective heating.

Experimental Study on the Characteristics of Combustion in Indirect Moxibustion with Cake Insulation (격병구(隔餠灸)(부자구(附子灸),호초구(胡椒灸))의 연소특성(燃燒特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Geon-hui;Lee, Geon-mok;Guk, Uo-suk
    • Journal of Acupuncture Research
    • /
    • v.21 no.6
    • /
    • pp.233-248
    • /
    • 2004
  • Objective : The purpose of this study is to investigate the mechanism and effect of moxibustion with monkshood cake, slice & black pepper cake. objectively, to be used as the quantitative data through the measurement of temperatqre, and to grasp the thermodynamic characteristics of moxibustion with monkshood cake, slice & black pepper cake. Methods : We have selected of the moxibustion with monkshood cake, slice & black pepper cake. indirect moxibustion. We make a comparative study of the thermodynamic characteristics of moxibustion with monkshood cake, slice & black pepper cake. We examined combustion times, temperatures, temperature gradients in each period during a combustion of moxa. Results & Conclusions : 1. We can design the moxibustion with monkshood cake that it has thermodynamic characteristics of 173sec effective combustion time, $44^{\circ}C$ maximum temperature, $0.22^{\circ}C/sec$ ascending maximum temperature, if we use 3mm thickness or 3mm and below of monkshood cake and the moxa cone is formed the conical shape that the base diameter was 8mm, the height was 10mm, the density was $600mg/cm^3$. 2. We can design the moxibustion with monkshood cake that it has thermodynamic characteristics of 205~271sec effective combustion period time, $44.6{\sim}46.1^{\circ}C$ maximum temperature, $0.18{\sim}0.24^{\circ}C/sec$ ascending maximum temperature, if we use 3mm thickness of monkshood cake and the moxa cone is formed the conical shape that the base diameter was 8mm, the height was 10mm, the density was $480{\sim}720mg/cm^3$.

  • PDF

Performance Characteristics of a Combined Regenerative Ammonia-Water Based Power Generation Cycle Using LNG Cold Energy (LNG 냉열을 이용하는 암모니아-물 복합 재생 동력 사이클의 성능 특성)

  • Kim, Kyounghoon;Oh, Jaehyeong;Jeong, Youngguan
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • The ammonia-water based power generation cycle utilizing liquefied natural gas (LNG) as its heat sink has attracted much attention, since the ammonia-water cycle has many thermodynamic advantages in conversion of low-grade heat source in the form of sensible energy and LNG has a great cold energy. In this paper, we carry out thermodynamic performance analysis of a combined power generation cycle which is consisted of an ammonia-water regenerative Rankine cycle and LNG power generation cycle. LNG is able to condense the ammonia-water mixture at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the thermodynamic models, the effects of the key parameters such as source temperature, ammonia concentration and turbine inlet pressure on the characteristics of system are throughly investigated. The results show that the thermodynamic performance of the ammonia-water power generation cycle can be improved by the LNG cold energy and there exist an optimum ammonia concentration to reach the maximum system net work production.

Thermodynamic Performance Characteristics of Organic Rankine Cycle (ORC) using LNG Cold Energy (LNG 냉열을 이용하는 유기랭킨사이클(ORC)의 열역학적 성능 특성)

  • Kim, Kyoung Hoon;Ha, Jong Man;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • In this work a thermodynamic performance analysis is carried out for a combined cycle consisted of an organic Rankine cycle (ORC) and a LNG cycle. The combined system uses a low grade waste heat in the form of sensible energy and the LNG cold energy is used for power generation as well as for heat sink. The effects of the key parameters of th system such as turbine inlet pressure, condensation temperature and source temperature on the characteristics of system are throughly investigated. The simulation results show that the thermodynamic performance of the combined system can be significantly improved compared to the normal ORC which is not using the LNG cold energy.

Detection and Analysis of DNA Hybridization Characteristics by using Thermodynamic Method (열역학법을 이용한 DNA hybridization 특성 검출 및 해석)

  • Kim, Do-Gyun;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.265-270
    • /
    • 2002
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and application area. So, the improvement of DNA hybridization detection method is very important for the determination of this hybridization reaction. Several molecular biological techniques require accurate predictions of matched versus mismatched hybridization thermodynamics, such as PCR, sequencing by hybridization, gene diagnostics and antisense oligonucleotide probes. In addition, recent developments of oligonucleotide chip arrays as means for biochemical assays and DNA sequencing requires accurate knowledge of hybridization thermodynamics and population ratios at matched and mismatched target sites. In this study, we report the characteristics of the probe and matched, mismatched target oligonucleotide hybridization reaction using thermodynamic method. Thermodynamic of 5 oligonucleotides with central and terminal mismatch sequences were obtained by measured UV-absorbance as a function of temperature. The data show that the nearest-neighbor base-pair model is adequate for predicting thermodynamics of oligonucleotides with average deviations for $\Delta$H$^{0}$ , $\Delta$S$^{0}$ , $\Delta$G$_{37}$ $^{0}$ and T$_{m}$, respectively.>$^{0}$ and T$_{m}$, respectively.

A Study on the Prediction of Hydrogen Vehicle by the Thermodynamic Properties

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.79-83
    • /
    • 2015
  • Hydrogen has long been recognized as a fuel having some unique and highly desirable properties, for application as a fuel in engines. Hydrogen has some remarkably high values of the key properties for transport processes, such as kinematic viscosity, thermal conductivity and diffusion coefficient, in comparison to those of the other fuels. Such differences together with its extremely low density and low luminosity help to give hydrogen its unique diffusive and heat transfer characteristics. The thermodynamic and heat transfer characteristics of hydrogen tend to produce high compression temperatures that contribute to improvements in engine efficiency and lean mixture operation.

A Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube (초임계상태의 물에 대한 관 내 층류유동장 및 열전달계수 분포특성에 관한 연구)

  • 이상호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.768-778
    • /
    • 2003
  • Numerical analysis has been carried out to investigate laminar convective heat transfer in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variations of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudocritical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number, Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity to the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

A Numerical Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube

  • Lee Sang-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.206-216
    • /
    • 2005
  • Numerical analysis has been carried out to investigate laminar convective heat transfer at zero gravity in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variation of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudo critical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number. Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity on the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

Dynamics and Characteristics of Regional Extreme Precipitation in the Asian Summer Monsoon (아시아 여름 몬순에서의 지역별 극한 강수의 역학과 특성)

  • Ha-Eun Jeon;Kyung-Ja Ha;Hye-Ryeom Kim;Hyoeun Oh
    • Atmosphere
    • /
    • v.34 no.3
    • /
    • pp.257-271
    • /
    • 2024
  • In 2023, the World Meteorological Organization released a report on climate conditions in Asia, highlighting the region's high vulnerability to floods and the increasing severity and frequency of extreme precipitation events. While previous studies have largely concentrated on broader-scale phenomena such as the Asian monsoon, it is crucial to investigate the substantial characteristics of extreme precipitation for a better understanding. In this study, we analyze the spatiotemporal characteristics of extreme precipitation during summer and their affecting factors by decomposing the moisture budgets within specific Asian regions over 44 years (1979~2022). Our findings indicate that dynamic convergence terms (DY CON), which reflect changes in wind patterns, primarily drive extreme rainfall across much of Asia. In southern Asian sub-regions, particularly coastal areas, extreme precipitation is primarily driven by low-pressure systems, with DY CON accounting for 70% of the variance. However, in eastern Asia, both thermodynamic advection and nonlinear convergence terms significantly contribute to extreme precipitation. Notably, on the Korean Peninsula, thermodynamic advection plays an important role, driven by substantial moisture carried by strong southerly mean flow. Understanding these distinct characteristics of extreme rainfall across sub-regions is expected to enhance both predictability and resilience.