• Title/Summary/Keyword: thermodynamic

Search Result 2,016, Processing Time 0.031 seconds

Evaluation of Thermodynamic Method for Pump Performance Measurement (열역학적 방법을 이용한 펌프 운전성능 평가법 검토)

  • Kang, Shin-Hyoung;Kim, Jin-Kwon;Hong, Soon-Sam;Yates, Alex
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.25-30
    • /
    • 2000
  • Thermodynamic method of pump performance measurement calculates pump efficiency and flowrate by measuring fluid temperature increase and pressure rise through the pump. The theory of this method is investigated and precise comparison experiment with classical hydraulic method was conducted to verify the accuracy. Classical hydraulic pump performance measurement results and Yatesmeter results based on the thermodynamic method showed good agreement in measured performance.

  • PDF

Development of a Computer Program to Calculate Thermodynamic Properties of Oxygen (산소의 열역학 상태량 계산을 위한 전산 프로그램 개발)

  • Park, Kyoung-Kuhn
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.256-260
    • /
    • 2003
  • A computer program to calculate thermodynamic properties of oxygen is developed. Procedures for the calculation is briefly discussed. The program calculates unknown thermodynamic properties fixing the state with two independent input properties. If input value by user is inappropriate, it displays an error message. In addition user can change units with easy. The program developed in this work can be utilized to calculate parameters required for the simulation and design of an equipment using oxygen.

  • PDF

Thermodynamic Modeling of Ni-Cr-Nb-C System for Analysis of Fracture Behavior of Heat-resistant Casting Alloys (IN-657) (내열 주조 합금 (IN-657) 파괴 거동 해석을 위한 Ni-Cr-Nb-C 시스템 열역학 모델링)

  • Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.445-453
    • /
    • 2021
  • Computational thermodynamics for various alloy systems is well known as the CALPHAD technique. Gibbs energy model parameters for each phase are obtained from experimentally measured thermodynamic properties and are mainly used to predict areas not experimentally measured and to analyze experimental results thermodynamically. In this study, the thermodynamic modeling of the Ni-Cr-Nb-C quaternary system is conducted for a thermodynamic analysis of the phenomena by which heat-resistant cast alloys (IN-657) are destroyed in certain areas after long-term use. The stable phases in the system according to the Cr content, phase fraction depending on the temperature, and long-range ordering parameters for the Ni2Cr phase are calculated and compared to results obtained experimentally. The calculated thermodynamic properties suitably explain the experimentally reported fracture temperature range and the results of stable phases formed in the fractured areas. Thermodynamic modeling through the CALPHD method is expected to be useful for analyzing and predicting the thermodynamic behaviors of various cast alloys.

Thermodynamic Assessment of the $ZrO_2-TiO_2$ System

  • Park, Jeong-Ho;Ping Liang;Seifert, Hans-Jurgen;Fritz Aldinger;Koo, Bon-Keup;Kim, Ho-Gi
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.11-15
    • /
    • 2001
  • A thermodynamic assessment for the ZrO$_2$-TiO$_2$ system has been conducted. An optimal thermodynamic data set for this system is evaluated by the CALPHAD(CALculation of PHAse Diagram) method applied to experimental phase diagram and thermodynamic data. The liquid is described by ionic liquid model with two sublattices. The solubilities of the solid phases, tetragonal ZrO$_2$ and TiO$_2$(rutile), were described by subregular substitutional model with one sublattice. Two compounds, ZrTiO$_4$ and ZrTi$_2$O$_6$, are modeled as stoichiometric compounds.

  • PDF

A REVIEW FOR DEVELOPING THERMODYNAMIC MODEL OF COMS CPS

  • Chae, Jong-Won;Han, Cho-Young;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.179-182
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geosynchronous satellite and has been developing by KARI and Astrium for Ka-band communication, ocean observation and meteorological observation. COMS Chemical Propulsion System (CPS) uses a bipropellant propulsion subsystem, which is applied for transferring COMS from GTO to GEO (mission orbit) and implementing station-keeping manoeuvres. In this paper COMS CPS is briefly introduced for understanding. A few of mathematical thermodynamic modelings of bipropellant propulsion system in literatures are reviewed and authors has studied those models for developing a computer program, which predicts variations of thermodynamic properties such as temperature and pressure histories in the helium pressurant tank, MMH propellant tank and NTO propellant tank during LAE firing and on-orbit manoeuvrings. The CPS thermodynamic model may be used to compute pressurant and propellant masses and to size tank volumes.

  • PDF

Intrinsic and Thermodynamic Effects on the Structure and Energy of the S$_N$2 Transition State$^*$

  • Lee, Ik-Choon;Seo, Heon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.448-453
    • /
    • 1986
  • Two contributions to the activation barrier of the $S_N2$ reaction, intrinsic and thermodynamic, are discussed in connection with the predictive power of various rate-equilibrium relationships. It has been shown that the PES models can only give correct predictions of changes in structure and energy of the transition state if the activation barrier is dictated by the thermodynamic factor. We concluded that the identity and dissociative $S_N2$ reactions are dominated by the intrinsic component while associative $S_N2$ reactions are predominantly of thermodynamic controlled. Thus in the former cases, the PES models fail, whereas in the latter cases predictions based on the intrinsic factor, the quantum mechanical models, fail. Finally in a general case of equal contributions by thermodynamic and intrinsic factors, the $SN_2$ reaction proceeds by a synchronous process with zero net charge on the reaction center, for which predictions of substituent effects will be the same as for the intrinsic control case.

A Consideration of Analytical Thermodynamic Modeling of Bipropellant Propulsion System

  • Chae, Jong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.243-246
    • /
    • 2008
  • This paper is to consider analytical thermodynamic modeling of bipropellant propulsion system. The objective of thermodynamic modeling is to predict thermodynamic conditions such as pressures, temperatures and densities in the pressurant tank and the propellant tank in which heat and mass transfer occur. In this paper also it shows analytic equations that calculate the evolution of ullage volume and interface areas. Since the ullage interface areas are time-varying,(the liquid propellant volume decreases as the rocket engine is firing; the change of ullage volume correspond to the change of liquid propellant volume) for a numerical convenience non-dimensionalized correlations are commonly used in most literatures with limitations; a few percentages of inherent error. The analytic equations are derived from analytic geometry, subsequently without inherent error. Those equations are important to calculate the heat transfer areas in the heat transfer equations. It presents the comparison result of both analytic equations and correlation method.

  • PDF

Modelling of noise-added saturated steam table using the neural networks (신경회로망을 사용한 노이즈가 첨가된 포화증기표의 모델링)

  • Lee, Tae-Hwan;Park, Jin-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.205-208
    • /
    • 2008
  • In numerical analysis numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But most of the thermodynamic properties of the steam table are determined by experiment. Therefore they are supposed to have measurement errors. In order to make noised thermodynamic properties corresponding to errors, random numbers are generated, adjusted to appropriate magnitudes and added to original thermodynamic properties. the neural networks and quadratic spline interpolation method are introduced for function approximation of these modified thermodynamic properties in the saturated water based on pressure. It was proved that the neural networks give smaller percentage error compared with quadratic spline interpolation. From this fact it was confirmed that the neural networks trace the original values of thermodynamic properties better than the quadratic interpolation method.

  • PDF

Thermodynamic Analysis of a Hydrogen Liquefaction Process for a Hydrogen Liquefaction Pilot Plant with a Small Capacity (소용량 수소액화 파일럿 플랜트 구축을 위한 공정의 열역학 해석)

  • KIM, TAEHOON;CHOI, BYUNG-IL;HAN, YONG-SHIK;DO, KYU HYUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • The present study discussed the thermodynamic analysis of the hydrogen liquefaction process to build a hydrogen liquefaction pilot plant with a small capacity (0.5 ton/day). A 2-stage Brayton cycle utilizing LNG/LN2 cold energy was suggested to be built in Korea for the hydrogen liquefaction pilot plant with a small capacity. Thermodynamic analysis on the effect of various variables on the efficiency of hydrogen liquefaction process was performed. As a result, the CASE in which the ortho-para conversion catalyst was infiltrated inside the heat exchanger showed the best process efficiency. Finally, thermodynamic analysis was performed on the effect of turbo expander compression ratio on the hydrogen liquefaction process and it was confirmed that an optimal turbo expander compression ratio exists.