• Title/Summary/Keyword: thermo-stability

Search Result 154, Processing Time 0.025 seconds

Stability Evaluation of Vitamin-C Inclusion Complexes Prepared using Supercritical ASES Process (초임계 ASES 공정으로 제조된 Vitamin-C 포접복합체의 안정성 평가)

  • Yang, Jun-Mo;Kim, Seok-Yun;Han, Ji-Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • A supercritical fluid process, called aerosol solvent extraction system(ASES), is especially suitable to the pharmaceutical, cosmetic and food industries due to its environmentally-friendly, non-toxic and residual solvent-free properties. In particular, the application of the ASES process to the processing of thermo-labile bioactive compounds has received attention of many scientists and engineers because of its low-temperature operating conditions. Unstable substances such as Vitamin-C and Vitamin-A can be effectively protected from degradation during the preparation process, because the ASES process is free from oxygen and moisture. In this study, Vitamin-C was formulated with 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta$-CD) for enhancement of Vitamin-C stability and bioavailability using the ASES process. To investigate the influence of the preparation process on the stability of Vitamin-C, Vitamin-C/HP-${\beta}$-CD inclusion complexes were prepared using both conventional solvent evaporation method and ASES process, and stored in a 50 mM phosphate buffer solution of pH 7.0 at $25^{\circ}C$ for 24 hours. From the experimental results, the stability of the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared from the ASES process was found to be much higher than that of pure Vitamin-C and the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared by the solvent evaporation method. The stability of Vitamin-C was observed to increase with the decrease of temperature at a constant pressure or with the increase of pressure at a constant temperature.

Evaluation of Physico-Mechanical Properties and Durability of Larix kaempferi Wood Heat-Treated by Hot Air (고온 열기 처리에 의한 낙엽송재의 물리·역학적 성능 및 내부후성능 변화 고찰)

  • Park, Yonggun;Han, Yeonjung;Park, Jun-Ho;Chang, Yoon-Seong;Yang, Sang-Yun;Chung, Hyunwoo;Kim, Kyungjung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.334-343
    • /
    • 2015
  • This study was carried out to evaluate quantitatively some properties (density, equilibrium moisture content, shrinkage, water vapor adsorption, water absorptivity, compressive strength, bending strength, hardness and decay resistance) of Larix kaempferi lumber which was heat-treated by hot air and has been used commercially in Korea. Equilibrium moisture content of the heat-treated wood was decreased with increase of hydrophobicity. Dimensional stability of the wood was improved with decrease of shrinkage, water vapor adsorption and free water absorptivity. Also, with the thermo-chemical changes of wood component and lower equilibrium moisture content, decay resistance and compressive strength of heat-treated wood were increased. But, bending strength and hardness of wood were decreased.

Characterization of Wild-Type and Mutated RET Proto-Oncogene Associated with Familial Medullary Thyroid Cancer

  • Masbi, Mohammad Hosein;Mohammadiasl, Javad;Galehdari, Hamid;Ahmadzadeh, Ahmad;Tabatabaiefar, Mohammad Amin;Golchin, Neda;Haghpanah, Vahid;Rahim, Fakher
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2027-2033
    • /
    • 2014
  • Background: We aimed to assess RET proto-oncogene polymorphisms in three different Iranian families with medullary thyroid cancer (MTC), and performed molecular dynamics simulations and free energy stability analysis of these mutations. Materials and Methods: This study consisted of 48 patients and their first-degree relatives with MTC confirmed by pathologic diagnosis and surgery. We performed molecular dynamics simulations and free energy stability analysis of mutations, and docking evaluation of known RET proto-oncogene inhibitors, including ZD-6474 and ponatinib, with wild-type and mutant forms. Results: The first family consisted of 27 people from four generations, in which nine had the C.G2901A (P.C634Y) mutation; the second family consisted of six people, of whom three had the C.G2901T (P.C634F) mutation, and the third family, who included 12 individuals from three generations, three having the C.G2251A (P.G691S) mutation. The automated 3D structure of RET protein was predicted using I-TASSER, and validated by various protein model verification programs that showed more than 96.3% of the residues in favored and allowed regions. The predicted instability indices of the mutated structures were greater than 40, which reveals that mutated RET protein is less thermo-stable compared to the wild-type form (35.4). Conclusions: Simultaneous study of the cancer mutations using both in silico and medical genetic procedures, as well as onco-protein inhibitor binding considering mutation-induced drug resistance, may help in better overcoming chemotherapy resistance and designing innovative drugs.

Effect of Phenolic Antioxidants System on Yellowing of Amorphous Poly-α-olefin (페놀계 산화방지제에 의한 비결정성 올레핀 수지의 황변 거동)

  • Kim, Si-Yong;Kim, Ho-Gyum;Park, Sang-Cheol;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.156-161
    • /
    • 2013
  • Phenolic antioxidants are effective stabilizers that provide excellent long-term heat stability by preventing thermo-oxidative degradation during processing and service life. However, under a selected set of circumstances, certain types of phenolics have been susceptible to discoloration due to prolonged storage in an environment containing oxides of nitrogen. It is investigated that the effect of addition of secondary antioxidant and chemical structure of primary antioxidant on discoloration of amorphous poly-${\alpha}$-olefin (APAO), which is especially prone to be decomposed in high processing temperature. From the result, it is concluded that a higher level of steric hindrance of phenolic antioxidant provided by long alkyl chain allows a more enhanced synergic effect with secondary antioxidant.

Surface Modification of Reverse Osmosis Membrane with Diphenylamine for Improved Chlorine and Fouling Resistance (Diphenylamine에 의해 표면개질된 역삼투막의 내염소성 및 내오염성 향상)

  • Kwon, Sei;Jee, Ki Yong;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.439-449
    • /
    • 2013
  • This study investigated the aromatic polyamide reverse osmosis membrane was modified with diphenylamine (DPA) for enhanced chlorine and fouling resistance and how to optimize. DPA has high reactivity and thermo chemical stability. The performance of a modified membranes was investigated and its surface analyzed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The experiment was conducted while changing the conditions of temperature and DPA solution concentration.

Recent Trends of MEMS Packaging and Bonding Technology (MEMS 패키징 및 접합 기술의 최근 기술 동향)

  • Choa, Sung-Hoon;Ko, Byoung Ho;Lee, Haeng-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.9-17
    • /
    • 2017
  • In these days, MEMS (micro-electro-mechanical system) devices become the crucial sensor components in mobile devices, automobiles and several electronic consumer products. For MEMS devices, the packaging determines the performance, reliability, long-term stability and the total cost of the MEMS devices. Therefore, the packaging technology becomes a key issue for successful commercialization of MEMS devices. As the IoT and wearable devices are emerged as a future technology, the importance of the MEMS sensor keeps increasing. However, MEMS devices should meet several requirements such as ultra-miniaturization, low-power, low-cost as well as high performances and reliability. To meet those requirements, several innovative technologies are under development such as integration of MEMS and IC chip, TSV(through-silicon-via) technology and CMOS compatible MEMS fabrication. It is clear that MEMS packaging will be key technology in future MEMS. In this paper, we reviewed the recent development trends of the MEMS packaging. In particular, we discussed and reviewed the recent technology trends of the MEMS bonding technology, such as low temperature bonding, eutectic bonding and thermo-compression bonding.

Reliability Assesment Test on the Regular Maintenance of HTS Cable System (초전도케이블시스템 유지.보수에 따른 신뢰성 평가 시험)

  • Sohn, Song-Ho;Yang, Hyung-Suk;Lim, Ji-Hyun;Choi, Ha-Ok;Kim, Dong-Lak;Ryoo, Hee-Suk;Hwang, Si-Dole
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.361-361
    • /
    • 2009
  • KEPCO High Temperature Superconducting (HTS) cable system rated with $3\Phi$, 22.9kV, 1250A was laid in 2006, and the long term test is in progress. The HTS cable system with the cooling system has been operated below cryogenic temperature. That environment exposes the system to the thermo-mechanical stress due to the significant temperature difference, and the cooling system has moving parts for the forced circulation of the coolant. Therefore the HTS cable system experiences thermal fatigue and moving part such as liquid nitrogen pump need a regular replacement every 5000 hours Building the assessment criterion, the maintenance procedure was established and regular preventive maintenance was done; improvement of the termination structure and the replacement of the bearing of liquid nitrogen pump. Following the proper process, the reliability assessment test including He leakage detection and the stability of flow rate was performed. This paper describes the process and result of the first regular maintenance of KEPCO HTS cable system

  • PDF

Study on the prevention of spragging in a tilting pad journal bearing using the variation of preload (예압 변경을 통한 틸팅패드 저널베어링의 Spragging 방지에 관한 연구)

  • Yang, Seong-Heon;Park, Chul-Hyun;Ha, Hyun-Cheon;Kim, Chae-Sil
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.281-286
    • /
    • 2001
  • Tilting pad journal bearings have been widely used in a high speed rotating machinery, such as steam turbines and gas turbines, owing to their inherent stability characteristics. However, some peculiar fatigue failure in the babbitt metal due to spragging has been continuously occurred at the leading edge of the upper pads. The spragging is defined as the pad vibration initiated on the upper unloaded pads in a tilting pad journal bearing. This paper describes both several kinds of bearing failure related with spragging and the theoretical investigation on the prevention of the spragging phenomenon using the variation of preload. Results show that positive preload(m>0.5) assures all pads remain statically loaded under all operating conditions. For the change of design parameter to prevent spragging, thermo-hydrodynamic lubrication and rotor dynamic analysis were performed to verify temperature limitation on bearing and vibration problems on rotor bearing system.

  • PDF

Development of Bioreactor System for L-Tyrosine Synthesis Using Thermostable Tyrosine Phenol-Lyase

  • Kim, Do-Young;Rha, Eugene;Choi, Su-Lim;Song, Jae-Jun;Hong, Seung-Pyo;Sung, Moon-Hee;Lee, Seung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.116-122
    • /
    • 2007
  • An efficient enzyme system for the synthesis of L-tyrosine was developed using a fed-batch reactor with continuous feeding of phenol, pyruvate, and ammonia. A thermo- and chemostable tyrosine phenol-lyase from Symbiobacterium toebii was employed as the biocatalyst in this work. The enzyme was produced using a constitutive expression system in Escherichia coli BL21, and prepared as a soluble extract by rapid clarification, involving treatment with 40% methanol in the presence of excess ammonium chloride. The stability of the enzyme was maintained for at least 18 h under the synthesis conditions, including 75 mM phenol at pH 8.5 and $40^{\circ}C$. The fed-batch system (working volume, 0.51) containing 1.0 kU of the enzyme preparation was continuously fed with two substrate preparations: one containing 2.2 M phenol and 2.4 M sodium pyruvate, and the other containing 0.4 mM pyridoxal-5-phosphate and 4M ammonium chloride (pH 8.5). The system produced 130g/I of L-tyrosine within 30h, mostly as precipitated particles, upon continuous feeding of the substrates for 22 h. The maximum conversion yield of L-tyrosine was 94% on the basis of the supplied phenol.

A Study on the Preparation of Thermoplastic Powder Coating Material and Its Flame Retardancy (열가소성 분말 코팅소재 제조 및 난연특성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.45-52
    • /
    • 2010
  • The purpose of this study is application to flame retardant powder coating(FRPC) material consisting of ammonium polyphosphate(APP) and magnesium hydroxide($Mg(OH)_2$) as a halogen free flame retardant into thermoplastic resin(LDPE-g-MAH). For improvement of adhesion, LDPE-g-MAH was synthesized from low density polyethylene(LDPE) and maleic anhydride(MAH). The mechanical properties as melt flow index, pencil hardness, cross-hatch adhesion and impact resistance of FRPC were measured. Also, the limited oxygen index(LOI) values were measured 17.3vol%, 31.1vol% and 33.7vol% for LDPE-g-MAH, FRPC-3(APP 15wt%, $Mg(OH)_2$ 15wt%) and FRPC-5(APP 30 wt%), respectively. The thermo gravimetry/differential thermal analysis(TG/DTA) of FPRC-3 was observed endothermic peak at $340^{\circ}C$ and $450^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by APP and $Mg(OH)_2$. It was showed V-0 grade for FRPC-3 and FRPC-4(APP 20wt%, $Mg(OH)_2$ 10wt%) that a char formation and drip suppressing effect, and combustion time reduced by UL94(vertical burning test). It was confirmed that flame retardancy was improved with the synergy effect because of char formation by APP and $Mg(OH)_2$.