Recent Trends of MEMS Packaging and Bonding Technology

MEMS 패키징 및 접합 기술의 최근 기술 동향

  • Choa, Sung-Hoon (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology) ;
  • Ko, Byoung Ho (Dept. Of Manufacturing System and Design Engineering, Seoul National University of Science and Technology) ;
  • Lee, Haeng-Soo (Department of Mechanical Engineering, Ulsan College)
  • Received : 2017.12.01
  • Accepted : 2017.12.18
  • Published : 2017.12.31


In these days, MEMS (micro-electro-mechanical system) devices become the crucial sensor components in mobile devices, automobiles and several electronic consumer products. For MEMS devices, the packaging determines the performance, reliability, long-term stability and the total cost of the MEMS devices. Therefore, the packaging technology becomes a key issue for successful commercialization of MEMS devices. As the IoT and wearable devices are emerged as a future technology, the importance of the MEMS sensor keeps increasing. However, MEMS devices should meet several requirements such as ultra-miniaturization, low-power, low-cost as well as high performances and reliability. To meet those requirements, several innovative technologies are under development such as integration of MEMS and IC chip, TSV(through-silicon-via) technology and CMOS compatible MEMS fabrication. It is clear that MEMS packaging will be key technology in future MEMS. In this paper, we reviewed the recent development trends of the MEMS packaging. In particular, we discussed and reviewed the recent technology trends of the MEMS bonding technology, such as low temperature bonding, eutectic bonding and thermo-compression bonding.


Grant : 고집적 다차원 센서 공정 플랫폼 개발

Supported by : 미래창조과학부


  1. S. H. Choa, "Reliability of Vacuum Packaged MEMS Gyroscopes", Microelectronics Reliability, 45, 361 (2005).
  2. Y. H. Cho, S. E. Kim, S. D Kim, "Wafer Level Bonding Technology for 3D Stacked IC", J. Microelectron. Packag. Soc., 20(1), 7 (2013).
  3. M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, "Silicon-to-silicon Direct Bonding Method", J. Appl. Phys. 60, 2987 (1986).
  4. C. T. Ko, and K. N. Chen, "Low Temperature Bonding Technology for 3D Integration", Microelectronics Reliability, 52, 302 (2012).
  5. J. H. Lee, J. Y. Song, Y. K. Lee, T. H. Ha, C.-W Lee, and S. M. Kim, "ISB Bonding Technology for TSV (Through-Silicon Via) 3D Package", J. Korean Soc. Precis. Eng., 31(10), 857 (2014).
  6. V. Lehmann, K. Mitani, R. Stengl, T. Mii, and U. Gosele, "Bubble-free Wafer Bonding of GaAs and InP on Silicon in a Microcleanroom", Jpn. J. Appl. Phys. Part 2, 28(12), 2141 (1989).
  7. Z. X. Xiong, and J. P. Raskin, "Low-temperature Wafer Bonding: a Study of Void Formation and Influence on Bonding Strength", J. Microelectromech. Syst., 14(2), 368 (2005).
  8. Q. Y. Tong, W. J. Kim, T. H. Lee, and U. Gosele, "Low Vacuum Wafer Bonding", Electrochem. Solid-State Lett., 1(1), 52 (1998).
  9. G. L. Sun, J. Zhan, Q. Y. Tong, S. J. Xie, Y. M. Cai, and S. J. Lu, "Cool Plasma Activated Surface in Silicon Wafer Direct Bonding Technology", Le Journal de Physique Colloques, 49(C4), 79 (1988).
  10. M. Reiche, K. Gutjahr, D. Stolze, D. Burcyk, and M. Petzold, "The Effect of Plasma Pretreatment on the Si/Si Bonding Behavior", Electrochem. Soc. Proc., pp.437-444 (1997).
  11. C. S. Tan, A. Fan, K. N. Chen, and R, Rief. "Low-temperature Thermal Oxide to Plasma-enhanced Chemical Vapor Deposition Oxide Wafer Bonding for Thin-film Transfer Application", Appl. Phys. Lett., 82, 2649 (2003).
  12. W. George, and P. I. Daniel "Field Assisted Glass-metal Sealing", J. Appl. Phys, 40(10), 3946 (1969).
  13. R. Hayashi, M. Mohri, N. Kidani, A. Okada, D. Nakamura, and A. Saiki, "Development of New Anodically-bondable Material and Feed-through Substrate with High Bending Strength and Fracture Toughness", Proc. 28th IEEJ Sensor Symposium, Tokyo, 93 (2011).
  14. S. W. Choi, W. B. Choi, Y. H. Lee, B. K Ju, S. M. Young, and B. H. Kim, "The Analysis of Oxygen Plasma Pretreatment for Improving Anodic Bonding", J. Electrochem. Soc., 149(1), G8 (2002).
  15. S. Toshihito, and E. Masayosh, "Circuit Damage by Anodic Bonding", Tech Report IEEJ, ST-92-7, 9 (1992).
  16. K. Schjolberg-Henriksen, J. A. Plaza, J. M. Rafi, J. Esteve, F. Campabadal, J. Santander, G. U. Jensen, and A. Hanneborg, "Protection of MOS Capacitors During Anodic Bonding", J. Micromech. Microeng., 12, 361 (2002).
  17. K. Schjolberg-Henriksen, G. U. Jensen, A. Hanneborg, and H. Jakobsen, "Sodium Contamination of SiO2 Caused by Anodic Bonding", J. Micromech. Microeng., 13, 845 (2003).
  18. Q. Wang, W. B Kim; S. H. Choa, K. D. Jung, J. S. Hwang; M. C. Lee, C. Y. Moon, and I. S. Song, "Application of Au-Sn Eutectic Bonding in Hermetic Rf MEMS Wafer Level Packaging", J. Microelectron. Packag. Soc., 12(3), 197 (2005).
  19. S. Sood, S. Farrens, R. Pinker, J. Xie, and W. Catabay, "Al-Ge Eutectic Wafer Bonding and Bond Characterization for CMOS Compatible Wafer Packaging", ECS Transactions, 33(4), 93 (2010).
  20. C. H. Tsau, S. M. Spearing, and M. A. Schmidt, "Characterization of Wafer-Level Thermocompression Bonds", J. Microelectromech. Systems., 13(6), 963 (2004).
  21. K. N. Chen, C. S. Tan, A. Fan, and R. Reif, "Morphology and Bond Strength of Copper Wafer Bonding", Electrochem. Solid-State Lett., 7(1), G14 (2004).
  22. C. H. Yun, J. R. Martin, L. Chen, and T. J. Frey, "Wafer Bonding with Metal Layers for MEMS Applications", ECS Transactions, 16(8), 117 (2008).
  23. C. Cetintepe, E. S. Topalli, S. Demir, O. A. Civi, and T. Akin, "A Fabrication Process Based on Structural Layer Formation Using Au-Au Thermocompression Bonding for RF MEMS Capacitive Switches and Their Performance", International Journal of Microwave and Wireless Technologies, 6(5), 473 (2014).
  24. C. S. Tan, D. F. Lim, X. F. Ang, J. Wei, and K. C. Leong, "Low Temperature CuACu Thermo-compression Bonding with Temporary Passivation of Self-assembled Monolayer and Its Bond Strength Enhancement", Microelectronics Reliability, 52, 321 (2012).