• 제목/요약/키워드: thermo-responsive swelling

검색결과 7건 처리시간 0.019초

Preparation and Properties of Modified PHEMA Hydrogels Containing Thermo-responsive Pluronic Component

  • Hong, Kwang-Hyun;Jeon, Young-Sil;Kim, Ji-Heung
    • Macromolecular Research
    • /
    • 제17권1호
    • /
    • pp.26-30
    • /
    • 2009
  • To modify and strengthen the properties of PHEMA hydrogel, composite hydrogels containing varying amounts of a Pluronic (PEO-PPO-PEO) component were synthesized by bulk polymerization of HEMA in the presence of Pluronic dimethacrylate under mild photo initiating conditions. The effects of the Pluronic component on gel properties were investigated by measuring the degree of swelling with its temperature responsive behavior, the mechanical properties, and the morphology of the composite hydrogels. With increased Pluronic content, the modified PHEMA hydrogels exhibited an increase in the degree of swelling, and the swelling showed an enhanced thermo-responsive behavior that was completely reversible. In addition, improved mechanical strength and the development of a microporous gel morphology were observed in hydrogels containing Pluronic.

Thermo-responsive antifouling study of commercial PolyCera® membranes for POME treatment

  • Haan, Teow Yeit;Chean, Loh Wei;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • 제11권2호
    • /
    • pp.97-109
    • /
    • 2020
  • Membrane fouling is the main drawback of membrane technology. Frequent membrane cleaning and membrane replacement are, therefore, required to reduce membrane fouling that causes permeate flux reduction, lower rejection, or higher operating pressure. Studies have proved that the alteration of membrane properties is the key controlling factor in lessening membrane fouling. Among stimuli-responsive membranes, thermo-responsive membrane is the most popular, with a drastic phase transition and swelling-shrinking behavior caused by the temperature change. In this study, the thermo-responsive ability of two commercial membranes, PolyCera® Titan membrane and PolyCera® Hydro membrane, at different temperatures was studied on the antifouling function of the membrane in palm oil mill effluent (POME) treatment. The evaluation of the membrane's thermo-responsive ability was done through three cycles of adsorption (fouling) and desorption (defouling) processes in a membrane filtration process. The experimental result depicted that PolyCera® Hydro membrane had a higher membrane permeability of 67.869 L/㎡.h.bar than PolyCera® Titan membrane at 46.011 L/㎡.h.bar. However, the high membrane permeability of PolyCera® Hydro membrane was compensated with low removal efficiency. PolyCera® Titan membrane with a smaller mean pore size had better rejection performance than PolyCera® Hydro membrane for all tested parameters. On the other hand, PolyCera® Titan membrane had a better hydrodynamic cleaning efficiency than PolyCera® Hydro membrane regardless of the hydrodynamic cleaning temperature. The best hydrodynamic cleaning performed by PolyCera® Titan membrane was at 35℃ with the flux recovery ratio (FRR) of 99.17 ± 1.43%. The excellent thermo-responsive properties of the PolyCera® Titan membrane could eventually reduce the frequency of membrane replacement and lessen the use of chemicals for membrane cleaning. This outstanding exploration helps to provide a solution to the chemical industry and membrane technology bottleneck, which is the membrane fouling, thus reducing the operating cost incurred by the membrane fouling.

액체금속이 첨가된 온도 감응성 poly(N-isopropylacrylamide) 하이드로젤의 전기적 특성 변화 고찰 (Liquid Metal Enabled Thermo-Responsive Poly(N-isopropylacrylamide)Hydrogel for Reversible Electrical Switch)

  • 임태환;이소희;여상영
    • 한국염색가공학회지
    • /
    • 제34권3호
    • /
    • pp.207-216
    • /
    • 2022
  • Hydrogels have gained considerable attention in various fields due to their easily transformative ability by different stimulation. In addition, metal-based conductive additives can enable the hydrogels to be conductive with dimension change. Although the development of the additives offered enhanced electrical properties to the hydrogels, correspondingly enhanced mechanical properties may limit the volume and electrical properties switching after stimulation. Here we prepared poly(N-isopropylacrylamide) (PNIPAM) thermo-responsive hydrogel that has a 32℃ of low critical solution temperature and added liquid metal particles (LMPs) as conductive additives, possessing soft and stretchable benefits. The LMPs enabled PNIPAM (PNIPAM/LMPs) hydrogels to be constricted over 32℃ with a high volume switching ratio of 15.2 when deswelled. Once the LMPs are spontaneously oxidized in hydrogel culture, the LMPs can release gallium ions into the hydrogel nature. The released gallium ions and oxidized LMPs enhanced the modulus of the PNIPAM/LMPs hydrogel, triggering high mechanical stability during repeated swelling/deswelling behavior. Lastly, highly constricted PNIPAM/LMPs hydrogel provided a 5x106 of electrical switching after deswelling, and the switching ratio was closely maintained after repeated swelling/deswelling transformation. This study opens up opportunities for hydrogel use requiring thermo-responsive and high electrical switching fields.

Synthesis and Characterization of Biodegradable Elastic Hydrogels Based on Poly(ethylene glycol) and Poly(${\varepsilon}-caprolactone$) Blocks

  • Im, Su-Jin;Choi, You-Mee;Subramanyam, Elango;Huh, Kang-Moo;Park, Ki-Nam
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.363-369
    • /
    • 2007
  • Novel biodegradable elastic hydrogels, based on hydrophilic and hydrophobic polymer blocks, were synthesized via the radical crosslinking reaction of diacrylates of poly(ethylene glycol) (PEG) and poly(${\varepsilon}-caprolactone$) (PCL). PEG and PCL diols were diacrylated with acryloyl chloride in the presence of triethylamine, with the reaction confirmed by FT-IR and $^1H-NMR$ measurements. The diacrylate polymers were used as building-blocks for the syntheses of a series of hydro gels, with different block compositions, by simply varying the feed ratios and molecular weights of the block components. The swelling ratio of the hydrogels was controlled by the balance between the hydrophilic and hydrophobic polymer blocks. Usually, the swelling ratio increases with increasing PEG content and decreasing block length within the network structure. The hydrogels exhibited negative thermo-sensitive swelling behavior due to the coexistence of hydrophilic and hydrophobic polymer components in their network structure, and such thermo-responsive swelling/deswelling behavior could be repeated using a temperature cycle, without any significant change in the swelling ratio. In vitro degradation tests showed that degradation occurred over a 3 to 8 month period. Due to their biodegradability, biocompatibility, elasticity and functionality, these hydrogels could be utilized in various biomedical applications, such as tissue engineering and drug delivery systems.

말단 아민기를 갖는 폴리(N-이소프로필아크릴아미드) 및 알긴산 나트륨-g-폴리(N-이소프로필아크릴아미드)의 합성과 열응답 특성 (Synthesis and Thermo-responsive Properties of Amino Group Terminated Poly(N-isopropylacrylamide) and Sodium Alginate-g-Poly(N-isopropylacrylamide))

  • 이은주;김영호
    • 폴리머
    • /
    • 제37권4호
    • /
    • pp.539-546
    • /
    • 2013
  • 열응답성 고분자인 폴리(N-이소프로필아크릴아미드) (PNIPAAm) 말단에 아민기를 갖는 PNIPAAm-$NH_2$ 및 이들 알긴산 나트륨에 그래프팅시킨 공중합체를 합성하고 이들의 여러 가지 특성들을 분석하였다. PNIPAAm-$NH_2$를 합성하기 위하여 N-이소프로필아크릴아미드를 라디칼 중합할 때 2-aminoethanethiol hydrochloride (AESH)를 연쇄이동제로 사용하였다. AESH 농도를 높이면 PNIPAAm-NH2의 분자량이 작아지며 PNIPAAm-$NH_2$ 수용액의 하한임계용액온도(LCST)가 낮아졌다. N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide 및 N-hydroxysuccinimide를 사용하여 PNIPAAm-$NH_2$를 graft-onto 방법으로 알긴산 나트륨에 그래프팅시킨 alginate-g-PNIPAAm 공중합체 역시 온도에 따라 팽윤-수축 거동을 하였으며, PNIPAAm-$NH_2$보다 약간 높은 온도에서 LCST를 나타내었고, 그래프트된 PNIPAAm의 양이 많아질수록 팽윤비가 커졌다.

자극감응성 유도용질로서 정삼투막에 부착된 온도감응성 고분자 (Temperature-Sensitive Polymers Adhered on FO Membrane as Drawing Agents)

  • 이청천;이종휘
    • 폴리머
    • /
    • 제38권5호
    • /
    • pp.626-631
    • /
    • 2014
  • 물을 정수하기 위해서는 그에 상응하는 막대한 양의 에너지가 소모되고, 이 때 소모되는 에너지는 환경오염을 야기할 수 있다. 이러한 문제 때문에 정수 공정 중에 상대적으로 낮은 에너지를 요구하는 정삼투 방법이 많은 관심을 받아왔다. 그러나 정삼투 방법은 오염수로부터 물을 끌어오기 위해서 높은 삼투압을 발생시킬 수 있는 유도용질이 필요하다는 점 때문에 어려움이 있었고 본 연구에서는 poly(N-isopropylacrylamide)(PNIPAM)이라는 온도 감응성 고분자 하이드로젤을 기본으로 하는 양쪽성 이온 물질과의 공중합체와 interpenetrating polymer network(IPN) 구조를 가지는 하이드로젤을 제작하고 이를 정삼투막에 부착시켜 성공적으로 유도용질 역할을 수행함을 확인하였다. 공중합체의 경우 팽윤비가 급격히 증가한 것을 확인할 수 있었으나, 그 만큼의 온도감응성이 떨어지는 모습을 보였고 IPN 구조의 경우는 온도감응성과 팽윤비 값이 PNIPAM 젤에 약간 못 미쳤다. 여기에 팽윤비 값과 삼투압의 관계를 확인하였다.

Dual Responsive Pectin Hydrogels and Their Silver Nanocomposites: Swelling Studies, Controlled Drug Delivery and Antimicrobial Applications

  • Reddy, P. Rama Subba;Eswaramma, S.;Krishna Rao, K.S.V.;Lee, Yong Ill
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2391-2399
    • /
    • 2014
  • Novel dual responsive pectin hydrogels composed from poly(acrylamidoglycolic acid-co-vinylcaprolactam)/Pectin (PAV-PC) and also PAV-PC hydrogels are used as templates for the production of silver nanoparticles. 5-Fluorouracil is an anticancer drug and has been loaded in situ into PAV-PC hydrogels. Structure and morphology characterization of PAV-PC hydrogels were investigated by fourier transform infrared spectroscopy, differential scanning calorimetry, thermo gravimetric analysis, X-ray diffraction studies, scanning electron microscopy and transmission electron microscopy. The results revealed a molecular level dispersion of the drug in PAV-PC hydrogels. In vitro release of 5-fluorouracil from the PAV-PC hydrogels has been carried out in GIT fluids as well as in various temperatures. 5-Fluorouracil released from PAV-PC hydrogels was 50% at pH 1.2, and 85% at pH 7.4 within 24 h. The release profile was characterized with PAV-PC hydrogels and initial burst effect was significantly reduced in two buffer media (1.2 and 7.4), followed by a continuous and controlled release phase, the drug release mechanism from polymer was due to Fickian diffusion. In situ fabrication of silver nanoparticles inside the hydrogel network via the reduction of sodium borohydrate by PAV-PC chains led to hydrogel nanocomposites. The diameter of the nanocomposites was about 50-100 nm, suitable for uptake within the gastrointestinal tract due to their nanosize range and mucoadhesive properties. These nanocomposite PAV-PC hydrogels showed strong antimicrobial activity towards Bacillus subtilis (G+ve) and Escherichia coli (G-ve).