• Title/Summary/Keyword: thermo-hydro-mechanical

Search Result 58, Processing Time 0.02 seconds

Numerical Study on Thermo-Hydro-Mechanical Coupling in Rock with Variable Properties by Temperature (암석의 온도의존성을 고려한 열-수리-역학적 상호작용의 수치해석적 연구)

  • 안형준;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1997
  • It is necessary to study on thermo-hydro-mechanical effect at rock mass performing project such as radiowaste disposal in deep rock mass. In this study, thermo-hydro-mechanical coupling analysis which is considered interaction and the variation of rock properties induced by temperature increase was performed for the circular shaft when appling temperature of 20$0^{\circ}C$ at the shaft wall. The shaft is diameter of 2 m and under hydrostatic stress of 5 MPa. In the cases, thermal expansion by temperature increase progress from the wall to outward and thermal expansion could induce tensile stress over the tensile strength of rock mass at the wall. When rock properties were given as a function of temperature, thermal expansion increased, tensile stress zone expanded. Lately, water flow is activated by increase of permeability and decrease of viscosity.

  • PDF

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao;Qi, Xiaohui
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.561-573
    • /
    • 2020
  • The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland (스위스 Mont Terri rock laboratory에서 수행된 암반 히터시험(HE-D)에 대한 열-수리-역학적 복합거동 수치해석)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.242-255
    • /
    • 2020
  • The numerical simulations of Heater Experiment-D (HE-D) at the Mont Terri rock laboratory in Switzerland were performed to investigate an applicability of FLAC3D to reproduce the coupled thermo-hydro-mechanical (THM) behaviour in Opalinus Clay, as part of the DECOVLEX-2015 project Task B. To investigate the reliability of numerical simulations of the coupled behaviour using FLAC3D code, the simulation results were compared with the observations from the in-situ experiment, such as temperature at 16 sensors, pore pressure at 6 sensors, and strain at 22 measurement points. An anisotropic heat conduction model, fluid flow model, and transversely isotropic elastic model in FLAC3D successfully represented the coupled thermo-hydraulic behaviour in terms of evolution for temperature and pore pressure, however, performance of the models for mechanical behavior is not satisfactory compared with the measured strain.

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis (민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석)

  • Go, Gyu-Hyun;Lee, Jangguen;Kim, Minseop
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.49-60
    • /
    • 2020
  • A fully coupled thermo-hydro-mechanical model is established to evaluate frost heave behaviour of saturated frost-susceptible soils. The method is based on mass conservation, energy conservation, and force equilibrium equations, which are fully coupled with each other. These equations consider various physical phenomena during one-dimensional soil freezing such as latent heat of phase change, thermal conductivity changes, pore water migration, and the accompanying mechanical deformation. Using the thermo-hydro-mechanical model, a sensitivity analysis study is conducted to examine the effects of the geotechnical parameters and external conditions on the amount of frost heave and frost heaving rate. According to the results of the sensitivity analysis, initial void ratio significantly affects each objective as an individual parameter, whereas soil particle thermal conductivity and temperature gradient affect frost heave behaviour to a greater degree when applied simultaneously. The factors considered in this study are the main factors affecting the frost heaving amount and rate, which may be used to determine the frostbite sensitivity of a new sample.

Development of a multiphysics numerical solver for modeling the behavior of clay-based engineered barriers

  • Navarro, Vicente;Asensio, Laura;Gharbieh, Heidar;la Morena, Gema De;Pulkkanen, Veli-Matti
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1047-1059
    • /
    • 2019
  • This work describes the development of a numerical module with a multiphysics structure to simulate the thermo-hydro-chemo-mechanical behavior of compacted bentonites. First, the conceptual model, based on the state-of-the-art formulation for clay-based engineered barriers in deep geological repositories, is described. Second, the advantages of multiphysics-based modules are highlighted. Then, the guidelines to develop a code using such tools are outlined, presenting an example of implementation. Finally, the simulation of three tests that illustrate the behavior of compacted bentonites assesses the scope of the developed code. The satisfactory results obtained, and the relative simplicity of implementation, show the opportunity of the modeling strategy proposed.