• Title/Summary/Keyword: thermo-chemical degradation

Search Result 33, Processing Time 0.026 seconds

Nondestructive Characterization of Degradation of EPDM Rubber for Automotive Radiator Hoses (자동차 냉각기 호스용 EPDM고무의 노화에 대한 비파괴 특성평가)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Choi, Youn-Joung;Shin, Sei-Moon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.368-376
    • /
    • 2005
  • Coolant rubber hoses for automobile radiators can be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. In this study, for EPDM(ethylene-propylene diene monomer) rubber conventionally used as a radiator hose material the aging behaviors of the skin part due to thermo-oxidative and electro-chemical stresses were nondestructively evaluated. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens degraded by electro-chemical degradation(ECD) test increased, whereas their. failure strain and IRHD hardness decreased largely. The penetration of coolant liquid seemed to induce some changes in inner structure and micro hardness distribution of the rubbers. Consequently, EPDM rubbers degraded by thermo-oxidative aging and ECD could be characterized nondestructively by micro-hardness and chemical structure analysis methods.

Degradation Behavior and Micro-Hardness Analysis of a Coolant Rubber Hose for Automotive Radiator (자동차용 냉각기 고무호스의 노화거동과 미소경도분석)

  • Kwak, Seung-Bum;Shin, Sei-Moon;Shin, Wae-Gi;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.915-923
    • /
    • 2007
  • Rubber hoses for automobile radiators are apt to be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. The aging behaviors of the skin part of the hoses due to thermo-oxidative and electro-chemical stresses were experimentally analyzed. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain as the aging time and temperature increased. On account of the penetration of coolant liquid into the skin part influenced by the electro-chemical degradation(ECD) test the weight of the rubber hose increased, whereas their failure strain and IRHD hardness decreased. The hardness of the hose in the side of the negative pole was the most deteriorated at the test site of the hose skin just below the coolant surface.

Charge transport and electroluminescence in insulating polymers (절연물 폴리머의 전하이동과 전계발광)

  • Yun, Ju-Ho;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.351-352
    • /
    • 2007
  • Polymers submitted to thermo/electrical stress suffer from ageing that can drastically affect their functional behaviour. Understanding the physico/chemical processes at play during ageing and defining transport regimes in which these mechanisms start to be critical is therefore a prime goal to prevent degradation and to develop new formulation or new materials with improved properties. It is thought that a way to define these critical regimes is to investigate under which conditions (in terms of stress parameters) light is generated in the material by electroluminescence (EL). This can happen through impact excitation/ionization involving hot carriers or upon bi-polar charge recombination (a definition that excludes light from partial discharges, which would sign an advanced stage in the degradation process). After a brief review of the EL phenomenology under DC, we introduce a numerical model of charge transport postulating a recombination controlled electroluminescence. The model output is critically evaluated with special emphasize on the comparison between simulated and experimental light emission. Finally, we comment some open questions and perspectives.

  • PDF

Evaluation of Thermal Property and Fluidity with Underfill for BGA Package (BGA 패키지를 위한 언더필의 열적 특성과 유동성에 관한 연구)

  • Noh, Bo-In;Lee, Bo-Young;Kim, Soo-Jung;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • In this study, the curing kinetics and thermal degradation of underfill were investigated using differential scanning calorimetry (DSC) and thermo gravimetry analysis (TGA). The mechanical and thermal properties of underfill were characterized using dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA). Also, we presented on underfill dispensing process using Prostar tool. The non-isothermal DSC scans at various heating rates, the exothermic reaction peak became narrower with increasing the heating rate. The thermal degradation of underfill was composed of two processes, which involved chemical reactions between the degrading polymer and oxygen from the air atmosphere. The results of fluidity phenomena were simulated using Star CD program, the fluidity of the underfills with lower viscosity was faster.

Molecular Structure and Tensile Properties Change of Crosslinked Polyethylene Pipes during Oxidative Degradation Process (산화열화과정 중 가교폴리에틸렌 파이프의 분자구조 및 인장 특성 변화)

  • Park, Sung-Gyu;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.520-524
    • /
    • 2009
  • The effects of oxidative degradation on the performance of crosslinked polyethylene pipes were analyzed by the investigation of tensile properties and chemical structure change of the pipes during oxidative degradation. Annealing at high temperatures or UV irradiation method was used to induce the oxidative degradation of the crosslinked polyethylene pipes and the effects of the die temperature on the oxidative degradation of the pipes were also investigated. The tensile properties and chemical structure change of the pipes were investigated by universal testing machine and FT-IR, respectively. With the progress of thermo-oxidative degradation the tensile strength of the pipes slowly decreased but the elongation at break rapidly decreased, and the chemical structure of the pipes also changed considerably because of the introduced oxygen molecules. These results would be useful in estimating the performance deterioration of the crosslinked polyethylene pipes due to the oxidative degradation during production and storage.

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis

  • Gawin, D.;Majorana, C.E.;Pesavento, F.;Schrelfer, B.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.203-214
    • /
    • 2005
  • In the Part 1 paper (Gawin, et al. 2005) some experimental results concerning micro-structural tests, permeability measurements and stress-strain tests of four types of High Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$) are presented and discussed. On the basis of these experimental results parameters of the constitutive relationships describing influence of damage and temperature upon material intrinsic permeability at high temperature were determined. In this paper the effects of various formulations of damage-permeability coupling on results of computer simulations are analysed and compared with the results obtained by means of the previously proposed approach, that does not take into account the thermo-chemical concrete damage directly. Numerical solutions are obtained using the recently developed fully coupled model of hygro-thermal and damage phenomena in concrete at elevated temperatures. High temperature effects are considered by means of temperature and pressure dependence of several material parameters. Based on the mathematical model, the computer code HITECOSP was developed. Material parameters of the model were measured by several European laboratories, which participated in the "HITECO" research project. A model problem, concerning hygro-thermal behaviour and degradation of a HPC structure during fire, is solved. The influence of two different constitutive descriptions of the concrete permeability changes at high temperature, including thermo-chemical and mechanical damage effects, upon the results of computer simulations is analysed and discussed.

Charge Transport and Electroluminescence in Insulating Polymers (절연층 폴리머의 전하 전송 및 EL 특성)

  • Choi, Yong-Sung;Ahn, Seong-Soo;Kim, Byung-Chul;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.91-97
    • /
    • 2008
  • Polymers submitted to thermo/electrical stress suffer from ageing that can drastically affect their functional behaviour. Understanding the physico/chemical processes at play during ageing and defining transport regimes in which these mechanisms start to be critical is therefore a prime goal to prevent degradation and to develop new formulation or new materials with improved properties. It is thought that a way to define these critical regimes is to investigate under which conditions (in terms of stress parameters) light is generated in the material by electroluminescence (EL). This can happen through impact excitation/ionization involving hot carriers or upon bi-polar charge recombination (a definition that excludes light from partial discharges, which would sign an advanced stage in the degradation process). After a brief review of the EL phenomenology under DC, we introduce a numerical model of charge transport postulating a recombination controlled electroluminescence. The model output is critically evaluated with special emphasize on the comparison between simulated and experimental light emission. Finally, we comment some open questions and perspectives.

  • PDF

Numerical prediction of stress and displacement of ageing concrete dam due to alkali-aggregate and thermal chemical reaction

  • Azizan, Nik Zainab Nik;Mandal, Angshuman;Majid, Taksiah A.;Maity, Damodar;Nazri, Fadzli Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.793-802
    • /
    • 2017
  • The damage of concrete due to the expansion of alkali-aggregate reaction (AAR) and thermal-chemical reactions affecting the strength of concrete is studied. The empirical equations for the variations of expansion of AAR, compressive strength and degradation of the modulus of elasticity with time, and compressive strength with degradation of the modulus of elasticity are proposed by analysing numerous experimental data. It is revealed that the expansion of AAR and compressive strength increase with time. The proposed combination of the time variations of chemical and mechanical parameters provides a satisfactory prediction of the concrete strength. Seismic analysis of the aged Koyna dam is conceded for two different long-term experimental data of concrete incorporating the proposed AAR based properties. The responses of aged Koyna dam reveal that the crest displacement of the Koyna dam significantly increases with time while the contour plots show that major principal stress at neck level reduces with time. As the modulus of elasticity decreases with ages the stress generated in the concrete structure get reduces. On the other hand with lesser value of modulus of elasticity the structure becomes more flexible and the crest displacement becomes very high that cause the seismic safety of the dam reduce.

Mechanical Property Behaviors of Polyethylene Pipe due to Thermal-Degradation (열화시간에 따른 폴리에틸렌 파이프의 기계적 물성 거동)

  • Weon, Jong-Il;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.446-451
    • /
    • 2009
  • Reliability evaluations of linear low density polyethylene (LLDPE) pipe with respect of thermal exposure time have been investigated in accordance with RS M 0042, which is a reliability standard for polymer pipe. As the thermal exposure time is prolonged, a progressive increase, until 250 days, in tensile strength and a slight increase in hardness are observed, while a proportional decrease in elongation at break is showed. These results can be explained by the increase of crystallinity, followed by the increase of crosslinking density, chain scission and the decrease in chain mobility, due to thermal oxidation as the exposure time increases. Long term hydrostatic pressure test result implies the existence of transition point from ductile to brittle fracture. Oxidation induction time (OIT) test is employed to monitor the thermo-oxidative degradation of LLDPE pipe. This result shows that after the exposure time is 250 days, the depletion of antioxidants added in LLDPE pipe occurs. An empirical equation as function of exposure time, under $100^{\circ}C$ thermal-degradation condition, is proposed to assess the remaining amount of antioxidants owing to thermo-oxidative degradation. Fourier transform infrared spectroscopy results show the increase of carbonyl (-C=O) and hydroxyl (O-H) function groups on the surface of thermally exposed LLDPE pipe. This result suggests that the hydrocarbon groups locally undergo the oxidation on the LLDPE surface due to thermal-degradation.

SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

  • Mayani, Suranjana V.;Mayani, Vishal J.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3535-3541
    • /
    • 2014
  • Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.