• Title/Summary/Keyword: thermally expandable microsphere

Search Result 5, Processing Time 0.017 seconds

Chemically Bonded Thermally Expandable Microsphere-silica Composite Aerogel with Thermal Insulation Property for Industrial Use

  • Lee, Kyu-Yeon;Phadtare, Varsha D.;Choi, Haryeong;Moon, Seung Hwan;Kim, Jong Il;Bae, Young Kwang;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.23-29
    • /
    • 2019
  • Thermally expandable microsphere and aerogel composite was prepared by chemical compositization. Microsphere can produce synergies with aerogel, especially an enhancement of mechanical property. Through condensation between sulfonated microsphere and hydrolyzed silica sol, chemically-connected composite aerogel could be prepared. The presence of hydroxyl group on the sulfonated microsphere was observed, which was the prime functional group of reaction with hydrolyzed silica sol. Silica aerogel-coated microsphere was confirmed through microstructure analysis. The presence of silicon-carbon absorption band and peaks from composite aerogel was observed, which proved the chemical bonding between them. A relatively low thermal conductivity value of $0.063W/m{\cdot}K$ was obtained.

A Study of Characteristics Variation of Thermally Expandable Microspheres in Post-polymerization Treatment by Various Initiators

  • You, Hae Na;Kim, Ji Hoo;Kim, Myeong Woo;Kim, Keon Il;Park, Hyun Duk
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.211-215
    • /
    • 2017
  • Thermally expandable microspheres were used as post-treatment initiators of potassium persulfate, sodium bisulfite, and sodium sulfide in order to improve the foaming ability and whiteness when foaming a mixture of thermally expandable microsphers and poly(vinyl chloride). Potassium persulfate showed no significant influence on the foaming behavior, foam expansion, whiteness, and yellowing, whereas in the case of using sodium bisulfite. In particular, sodium bisulfite demonstrated the best efficiency with 2 wt% treatment. The thermally expandable microspheres prepared herein can provide excellent foamability and whiteness, and are expected to be applicable in various fields such as general coating and wallpaper.

A Study on the Thermally Expandable Microspheres for Wallpaper by the particle size of Colloidal Silica

  • Lee, Sang-Jin;Jo, Kang-Jin;Park, Jin-Wook;Kim, Myeong Woo;Kim, Ji-Hoo
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.131-135
    • /
    • 2018
  • This study was aimed at improving the white index (WI) to prepare thermally expandable microspheres for wallpaper. In particular, thermally expandable microspheres were prepared for different colloidal silica particle sizes to study thermal properties, foaming ratio, and WI. The spheres obtained from tiny colloidal silica were the best in terms of WI and yellowing. Additionally, thermogravimetric analysis results show that small colloidal silica particles are more likely to be adsorbed physically or chemically to the microsphere surface, thereby improving WI at higher temperatures.

Properties of Light-weight Expanded Bonded Leather Using Thermal Expandable Microspheres (열 팽창성 Microsphere를 적용한 경량 발포 재생피혁 특성 분석)

  • Shin, Eun-Chul;Kim, Won-Ju;Kim, Yeong-Woo
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.81-85
    • /
    • 2020
  • Shaving dust is a collagen fiber that is the leather waste occurred for thickness adjustment during the natural leather manufacturing process, and causes problems such as an environmental contamination because of a chromium (Cr) contained when it comes to reclaiming process. Various studies applying the shaving dust are currently being conducted in many countries across the world with an initiative by the EU. Of those applications, the bonded leather is being highlighted as a substitute for natural leather. Since the bonded leather, however, uses latex as a binder, accordingly it entails a high weight and a poor ventilation, which are deemed as disadvantages due to its dense internal tissues compared to other synthetic leathers. To address such disadvantages, this study employed the thermally expandable micro sphere to improve its air permeability and light weight by alleviating the internal structure. This is a study on the manufacturing of light bonded leather using the shaving dusts. In the study, the shaving dusts were forced to foam under 100~120℃ considering the heat resistance of collagen fiber after applying the thermally expandable micro sphere, and then the tendency was analyzed. In the analysis results, the most excellent foaming rate was exhibited when the shaving dusts were treated under 120℃ for 8 minutes and the variation of internal structure according to a foaming was observed through SEM analysis for the cross-section of the bonded leather.

Effect of Blowing Agents on Physical Properties of Polyurethane-polydimethylsiloxane Hybrid Foam

  • Asell Kim;Hyeonwoo Jeong;Sang Eun Shim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.208-215
    • /
    • 2023
  • In this study, the properties of polyurethane-polydimethylsiloxane (PU-PDMS) hybrid foams containing different types and contents of physical blowing agents (PBAs) were investigated. Two types of blowing agents, namely physical blowing agents and thermally expandable microspheres (TEM), were applied. The apparent density was measured using precisely cut foam samples, and the pore size was measured using image software. In addition, the microstructure of the foam was confirmed via scanning electron microscopy and transmission electron microscopy. The thermal conductivities related to the microstructures of the different foams were compared. When 0.5 phr of the hydrocarbon-based PBA was added, the apparent density and pore size of the foam were minimal; however, the pore size was larger than that of neat foam. In contrast, the addition of 3 phr of TEM effectively reduced both the apparent density and pore size of the PBAs. The increase in resin viscosity owing to TEM could enhance bubble production stability, leading to the formation of more uniform and smaller pores. These results indicate that TEM is a highly efficient PBA that can be employed to decrease the weight and pore size of PU-PDMS hybrid foams.