• Title/Summary/Keyword: thermal-flow

Search Result 3,613, Processing Time 0.031 seconds

Study on the Splat Formation of Ni-based Thermal Sprayed Coatings (니켈기 용사코팅의 스플랫 형성에 관한 연구)

  • Kim, K.T.;Lee, S.S.;Lee, D.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.49-53
    • /
    • 2012
  • Thermal spray coatings developed by deposition of splats, it formed by impacting molten droplets on substrates during thermal spray process. In this study, the Ni-based coatings were fabricated by thermal spray process with two different process parameters, oxygen gas flow and acetylene gas flow, with three different levels of each parameters. The morphology of splats and microstructure were observed by optical microscope. Hardness test were performed on the Ni-based coatings. It was confirmed that process parameters of thermal spray process have effect in morphology of splats. These effects also have important implications on the deposit microstructure and properties of Ni-based coatings.

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRIPING (Thermal Striping 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.1-11
    • /
    • 2005
  • A numerical study of the evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple-jet flow with the same velocity but different temperatures. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLEC algorithm. The results of the present study show that the temporal oscillation of temperature is predicted by the SST and V2-f models, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. In addition, it is shown that both the two-layer and SST models have nearly the same capability predicting the thermal striping, and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

Evaluation of Turbulence Models for Analysis of Thermal Striping (Thermal Striping 해석 난류모델 평가)

  • Choi Seok-Ki;Nam Ho-Yun;Wi Myung-Hwan;Eoh Jae-Hyuk;Kim Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.142-147
    • /
    • 2005
  • A numerical study of evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple jet flow with the same velocity but different temperature. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLE algorithm. The results of the present study show that the temporal oscillation of temperature is predicted only by the V2-f model, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. The the two-layer model and the SST model shows nearly the same capability of predicting the thermal striping and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

  • PDF

Thermal Flow Characteristics Driven by Arc Plasmas in a Thermal Puffer Type GCB (열파퍼식 가스차단기에서 발생하는 아크 플라즈마에 의한 열유동 특성)

  • Lee, Jong-Chul;Kim, Youn J.
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.527-532
    • /
    • 2005
  • During the last ten years the new interruption techniques, which use the arc energy itself to increase the pressure inside a chamber by the PTFE nozzle ablation, have displaced the puffer circuit breakers due to reduced driving forces and better maintainability. In this paper, we have investigated the thermal flow characteristics inside a thermal puffer type gas circuit breaker by solving the Wavier-Stokes equations coupled with Maxwell's equations for considering all instabilities effects such as turbulence and Lorentz forces by transient arc plasmas. These relative inexpensive computer simulations might help the engineer research and design the new interrupter in order to downscale and uprating the GIS integral.

Thermographic Detection of Surface Crack Using Holomorphic Function of Thermal Field

  • Kim, No-Hyu;Lim, Zong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.296-301
    • /
    • 2012
  • This paper describes an analytic method for infrared thermography to detect surface cracks in thin plates. Traditional thermographic method uses the spatial contrast of a thermal field, which is often corrupted by noise in the experiment induced mainly by emissivity variations of target surfaces. This study developed a robust analytic approach to crack detection for thermography using the holomorphic function of a temperature field in thin plate under steady-state thermal conditions. The holomorphic function of a simple temperature field was derived for 2-D heat flow in the plate from Cauchy-Riemann conditions, and applied to define a contour integral that varies depending on the existence and strength of singularity in the domain of integration. It was found that the contour integral at each point of thermal image reduced the noise and temperature variation due to heat conduction, so that it provided a clearer image of the singularity such as cracks.

A Study on Improving the Efficiency of Ground Heat Exchanger (지중열교환기 성능 향상에 관한 연구)

  • Kim, Ook-Joong;Lee, Kong-Hoon;Kim, Min-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3142-3147
    • /
    • 2008
  • A simple transient simulation of ground source heat pump system was carried out to investigate the effects of ground thermal conductivity on its performance. The TRNSYS code with a simple water to water heat pump model was used to compare the COP variation of the system. A new ground heat exchanger called by semi-closed loop was proposed and constructed in the real site. The effective thermal conductivity was measured using the test equipment developed by according to the line source model. The simulation results showed that highly efficient thermal conductivity of the grout material could increase the performance of the heat pump system very well. And the new ground heat exchanger showed the increased effective thermal conductivity as the penetration water flow rate(PWFR) was increased. Therefore, the performance improvement of the heat pump system using the proposed ground heat exchanger can be expected.

  • PDF

An Analysis of the Thermal Performance of the Glass Evacuated Tube Solar Collector (진공관형 태양열 집열기의 열성능 해석)

  • Kim, Y.;Seo, T.B.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.43-49
    • /
    • 2003
  • The thermal performance of the glass evacuated tube solar collector is numerically investigated. The glass evacuated tube solar collector consists of a two-layed glass tube, a copper tube, and the working fluid. The length and the diameter of the glass tube are 1,200mm and 38mm, respectively. The diameter, thickness, and length of the copper tube and the flow rate of air are considered as the important design and operating parameters of the collector. The effect of these parameters on the thermal performance of the collector are investigated. The results show that as the diameter, the thickness, and the length of the copper tube increase and the flow rate of the air decreases, the thermal performance and the outlet mean temperature increase.

Numerical analysis for mitigating thermal stratification flow of pressurizer surge horizontal pipe by outside heating (가압기 밀림관 수평배관 외부 가열에 의한 열성층 유동 완화 수치해석)

  • Jeong, I.S.;Kim, Y.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.670-678
    • /
    • 1997
  • A method to mitigate the thermal stratification phenomenon of pressurizer surge line is proposed by heating bottom outside of horizontal pipe. Unsteady two dimensional model has been used to numerically investigate an effect of heating the bottom of pipe. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature and streamline profiles of fluids and pipe walls with time are compared with the previous study result. The numerical result of this study shows that the outside heating can relaxate the thermal stratification flow of the pressurizer surge line. Maximum dimensionless temperature difference between hot and cold sections of the pipe inner wall which causes thermal stratification was reduced from 0.514 to 0.424 at dimensionless time 1, 632 and 1, 500 respectively.

Numerical study of direct contact membrane distillation process: Effects of operating parameters on TPC and thermal efficiency

  • Zamaniasl, Mohammadmehdi
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.387-394
    • /
    • 2019
  • Membrane distillation (MD) is one of the water treatment processes which involves the momentum, heat and mass transfer through channels and membrane. In this study, CFD modeling has been used to simulate the heat and mass transfer in the direct contact membrane distillation (DCMD). Also, the effect of operating parameters on the water flux is investigated. The result shows a good agreement with the experimental result. Results indicated that, while feed temperature is increasing in the feed side, water flux improves in the permeate side. Since higher velocity leads to the higher mixing and turbulence in the feed channel, water flux rises due to this increase in the feed velocity. Moreover, results revealed that temperature polarization coefficient is rising as flow rate (velocity) increases and it is decreasing while the feed temperature increases. Lastly, the thermal efficiency of direct contact membrane distillation is defined, and results confirm that thermal efficiency improves while feed temperature increases. Also, flow rate increment results in enhancement of thermal efficiency.

Some Considerations on Heat Flow in Korea (한반도(韓半島) 지열류량(地熱流量)에 대(對)한 약천(若千)의 고찰(考察))

  • Sung Kyun, Kim
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.109-114
    • /
    • 1984
  • The geophysical implications of the observed heat flow in the Korean Peninsula are examined. The Peninsula can be devided into two typical regions of high (Zone 1) and normal heat flows (Zone 2), and anomalous sharp change of heat flow between two zones is noteworthy. Zone 1 (southeastern coast of the Peninsula) to be connected to the East Sea (=Japan Sea) of high heat flow region corresponds with the region of late-Mesozoic to Tertiary igneous activity. With the radioactive elements concentrated in the crust, the observed heat flow in Zone 2 can be almostly explained. While, only a half of the heat flow in Zone 1 is explained. As a possible explanation of high heat flow in Zone 1, partial melting in the lower crust is examined. The temperature of $800-900^{\circ}C$ calculated at the bottom of the crust excludes the possibility of partial melting or magma generation in the crust. Alternatively, a remaining thermal effect of late-Mesozoic to Tertiary igneous activity is considered. However, it appears that the thermal effect already disappeared and that the vertical temperature distribution reached at steady state 30 MY ago (= 10 MY after the igneous activities came to an end). After all, the existence of some other effective heat transfer in Zone 1 is strongly suggested. The high heat flow to be same kind of anomalous one of the East Sea can be recognized as a result of the trench-back-arc thermal flux. The plate subduction in the Japan Trench will generate an induced flow above the slab of the East Sea, a typical back-arc basin, and hence the induced flow will heat the surrounding lithosphere.

  • PDF