• 제목/요약/키워드: thermal-cycling

검색결과 311건 처리시간 0.03초

알루미나 시멘트에 기반한 복합재료의 열역학적 특성 (Thermal and Mechanical Properties of Alumina Cementitious Composite Materials)

  • 양인환;이정환;최영철
    • 한국건설순환자원학회논문집
    • /
    • 제3권3호
    • /
    • pp.199-205
    • /
    • 2015
  • 이 연구에서는 고온의 축열재료로 사용하기 위한 알루미나 시멘트 복합재료의 역학적 및 열적 특성을 파악하고자 하였다. 알루미나 시멘트를 기본 바인더로 하고 플라이애시, 실리카퓸, CSA (calcium sulfo-aluminate) 및 그라파이트의 치환에 따른 고온에서의 물성을 파악하였다. 알루미나 시멘트 기반 복합재료의 역학적 특성으로서 열사이클 전과 후의 압축강도 및 인장강도를 측정하였다. 또한, 복합재료의 열적 특성으로서 열전도율과 비열을 측정하였다. 열사이클링 적용 이후의 잔류압축강도 측정결과, 알루미나 시멘트만을 사용한 배합과 알루미나 시멘트를 실리카퓸으로 치환한 배합의 압축강도가 크게 나타나며, 이 두 배합의 잔류강도 비는 65%를 상회한다. 그라파이트를 혼합한 복합재료의 비열이 가장 크고 이는 그라파이트의 비열이 크기 때문이다. 연구결과는 콘크리트를 고온조건에서의 축열매체로 활용하기 위한 실제적인 기초실험 자료로 활용될 수 있을 것으로 사료된다.

자동차 전장품용 무연솔더 접합부의 시리즈 시험 유효성 (Validation of sequence test method of Pb-free solder joint for automotive electronics)

  • 김아영;오철민;홍원식
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.25-31
    • /
    • 2015
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from electronic devices and system. Specifically, reliability issue of lead-free solder joint have an increasing demand for the car electronics caused by ELV banning. The authors prepared engine control unit and cabin electronics soldered with Sn-3.0Ag-0.5Cu (SAC305). To compare with the degradation characteristics of solder joint strength, thermal cycling test (TC), power-thermal cycling test (PTC) and series tests were conducted. Series tests were conducted for TC and PTC combined stress test using the same sample in sequence and continuously. TC test was performed at $-40{\sim}125^{\circ}C$ and soak time 10 min for 1000 cycles. PTC test was applied by pulse power and full function conditions during 100 cycles. Combined stress test was tested in accordance with automotive company standard. Solder joint degradation was observed by optical microscopy and environment scanning electron microscopy (ESEM). In addition, to compare with deterioration of bond strength of quad flat package (QFP) and chip components, we have measured lead pull and shear strength. Based on the series test results, consequently, we have validated of series test method for lifetime and reliability of Pb-free solder joint in automotive electronics.

Reliability Enhancement of Anisotropic Conductive Adhesives Flip Chip on Organic Substrates by Non-Conducting Filler Additions

  • Paik, Kyung-Wook;Yim, Myung-Jin
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.9-15
    • /
    • 2000
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt. %). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. For the characterization of modified ACAs composites with different content of non-conducting fillers, dynamic scanning calorimeter (DSC), and thermo-gravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), and thermo-mechanical analyzer (TMA) were utilized. As the non-conducting filler content increased, CTE values decreased and storage modulus at room temperature increased. In addition, the increase in tile content of filler brought about the increase of Tg$^{DSC}$ and Tg$^{TMA}$. However, the TGA behaviors stayed almost the same. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significant affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers.ers.

  • PDF

Reliability Enhancement of Anisotropic Conductive Adhesives Flip Chip on Organic Substrates by Non-Conducting Filler Additions

  • Paik, Kyung-Wook;Yim, Myung-Jin
    • 마이크로전자및패키징학회지
    • /
    • 제7권1호
    • /
    • pp.41-49
    • /
    • 2000
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt.%). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. For the characterization of modified ACAs composites with different content of non-conducting fillers, dynamic scanning calorimeter (DSC), and thermo-gravimetric analyser (TGA), dynamic mechanical analyzer (DMA), and thermo-mechanical analyzer (TMA) were utilized. As the non-conducting filler content increased, CTE values decreased and storage modulus at room temperature increased. In addition, the increase in the content of filler brought about the increase of $Tg^{DSC}$ and $Tg^{TMA}$. However, the TGA behaviors stayed almost the same. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers.

  • PDF

Reliable Anisotropic Conductive Adhesives Flip Chip on Organic Substrates For High Frequency Applications

  • Paik, Kyung-Wook;Yim, Myung-Jin;Kwon, Woon-Seong
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 Proceedings of 6th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.35-43
    • /
    • 2001
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt.%). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers. Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of $SiO_2filler$ to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. Our results indicate that the electrical performance of ACF combined with electroless Wi/Au bump interconnection is comparable to that of solder joint.

  • PDF

Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

  • Mitov, Gergo;Anastassova-Yoshida, Yana;Nothdurft, Frank Phillip;See, Constantin von;Pospiech, Peter
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권1호
    • /
    • pp.30-36
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling $5^{\circ}C-55^{\circ}C$ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at $137^{\circ}C$, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

The Reliability Test of Sealing Glass Frit in AC PDP

  • Jeon, Young-Hwan;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Hyung-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1538-1541
    • /
    • 2005
  • For reliability evaluation of AC-PDP, one of the most important factor is sealing property. In this paper, the reliability evaluation test method of the commercialized sealing glass frit in AC-PDP was studied. 6 inch AC-PDP panels were tested for evaluation of sealing glass frit by vibration shock test, thermal shock test, non -destructive X-ray inspection, residual stress inspection and residual gas detection. These test methods are proposed as a standard for testing the reliability of sealing glass frit. The main failure mode of sealing glass frit in AC-PDP seems to be the crack propagation from thermal cycling rather than mechanical factor.

  • PDF

플랜트 동특성 해석용 소프트웨어 개발 및 초임계압 관류형 보일러에의 적용 (Development of Dynamic Simulation Software for Power Plant and its Application to Once-Through Boiler)

  • 이기현;이동수;조창호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.656-661
    • /
    • 2000
  • In the recent trend of electric power supply market, a variable pressure operation supercritical once-through steam generator is highlighted as a thermal power plant for cycling load because of its superiority in load regulation. Almost all thermal power plants of the future are expected to be variable pressure operation supercritical once-through units. APESS(Advanced Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is under being developed by Korea Heavy Industries & Construction Co., Ltd. This paper present the introduction of APESS and the result of simulation for variable pressure operation supercritical once-through steam generator.

  • PDF

BGA 형태 솔더 접합부의 피로 수명 예측에 관한 연구 (Study on the Prediction of Fatigue Life of BGA Typed Solder Joints)

  • 김성걸;김주영
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.137-143
    • /
    • 2008
  • Thermal fatigue life prediction for solder joints becomes the most critical issue in present microelectronic packaging industry. And lead-free solder is quickly becoming a reality in electronic manufacturing fields. This trend requires life prediction models for new solder alloy systems. This paper describes the life prediction models for SnAgCu and SnPb solder joints, based upon non-linear finite element analysis (FEA). In case of analyses of the SnAgCu solder joints, two kinds of shapes are used. As a result, it is found that the SnAgCu solder has longer fatigue life than the SnPb solder in temperature cycling analyses.