• Title/Summary/Keyword: thermal vapor deposition

Search Result 539, Processing Time 0.027 seconds

Growth of Aluminum Nitride Thin Films by Atomic Layer Deposition and Their Applications: A Review (원자층 증착법을 이용한 AlN 박막의 성장 및 응용 동향)

  • Yun, Hee Ju;Kim, Hogyoung;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.567-577
    • /
    • 2019
  • Aluminum nitride (AlN) has versatile and intriguing properties, such as wide direct bandgap, high thermal conductivity, good thermal and chemical stability, and various functionalities. Due to these properties, AlN thin films have been applied in various fields. However, AlN thin films are usually deposited by high temperature processes like chemical vapor deposition. To further enlarge the application of AlN films, atomic layer deposition (ALD) has been studied as a method of AlN thin film deposition at low temperature. In this mini review paper, we summarize the results of recent studies on AlN film grown by thermal and plasma enhanced ALD in terms of processing temperature, precursor type, reactant gas, and plasma source. Thermal ALD can grow AlN thin films at a wafer temperature of $150{\sim}550^{\circ}C$ with alkyl/amine or chloride precursors. Due to the low reactivity with $NH_3$ reactant gas, relatively high growth temperature and narrow window are reported. On the other hand, PEALD has an advantage of low temperature process, while crystallinity and defect level in the film are dependent on the plasma source. Lastly, we also introduce examples of application of ALD-grown AlN films in electronics.

Susceptor design by numerical analysis in horizontal CVD reactor

  • Lee, Jung-Hun;Yoo, Jin-Bok;Bae, So-Ik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.4
    • /
    • pp.135-140
    • /
    • 2005
  • Thermal-fluid analysis was performed to understand the thermal behavior in the horizontal CVD reactor thereby to design a susceptor which has a uniform deposition rate during silicon EPI growing. Four different types of susceptor designs, standard (no hole susceptor), hole $\sharp$1 (240 mm), hole $\sharp$2 (150 mm) and hole $\sharp$3 (60 mm), were simulated by CFD (Computational Fluid Dynamics) tool. Temperature, gas flow, deposition rate and growth rate were calculated and analyzed. The degree of flatness of EPI wafer loaded on the susceptor was computed in terms of silicon growth rate. The simulation results show that the temperature and thermal distribution in the wafer are greatly dependent on inner diameter of hole susceptor and demonstrate that the introduction of hole in the susceptor can degrade wafer flatness. Maximum temperature difference appeared around holes. As the diameter of the hole decreases, flatness of the wafer becomes poor. Among the threes types of susceptors with the hole, optimal design which resulted a good uniform flatness ($5\%$) was obtained when using hole $\sharp$1.

EFFECTS OF SHOWERHEAD DIAMETERS ON THE FLOWFIELDS IN A RF-PECVD REACTOR (CVD 반응기 내에서의 유동장에 대한 샤워헤드 지름의 영향에 대한 수치적 연구)

  • Kim, You-Jae;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1475-1480
    • /
    • 2004
  • Plasma Enhanced Chemical Vapor Deposition (PECVD) process uses unique property of plasma to modify surfaces and to achieve the high deposition rates. In this study, a vertical thermal RF-PECVD (Radio Frequency-PECVD) reactor is modeled to investigate thermal flow and the deposition rates with various shapes of the showerhead. The showerhead in the CVD reactor has the shape of a ring and gases are injected in parallel with the susceptor, which is a rotating disk. In order to achieve the high deposition rates, we have simulated the thermal flow fields in the reactor with several showerhead models. Especially the effects of the number of injection holes and the rotating speed of the susceptor are studied. Using a commercial code, CFDACE, which uses FVM (Finite Volume Method) and SIMPLE algorithm, governing equations have been solved for the pressure, mass-flow rates and temperature distributions in the CVD reactor. With the help of the Nusselt number and Sherwood number, the heat and mass transfers on the susceptor are investigated. In order to characteristics of measure the flatness of the layer, furthermore, the relative growth rate (RGR) is considered.

  • PDF

A review: controlled synthesis of vertically aligned carbon nanotubes

  • Hahm, Myung-Gwan;Hashim, Daniel P.;Vajtai, Robert;Ajayan, Pulickel M.
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.185-193
    • /
    • 2011
  • Carbon nanotubes (CNTs) have developed into one of the most competitively researched nano-materials of this decade because of their structural uniqueness and excellent physical properties such as nanoscale one dimensionality, high aspect ratio, high mechanical strength, thermal conductivity and excellent electrical conductivity. Mass production and structure control of CNTs are key factors for a feasible CNT industry. Water and ethanol vapor enhance the catalytic activity for massive growth of vertically aligned CNTs. A shower system for gas flow improves the growth of vertically aligned single walled CNTs (SWCNTs) by controlling the gas flow direction. Delivery of gases from the top of the nanotubes enables direct and precise supply of carbon source and water vapor to the catalysts. High quality vertically aligned SWCNTs synthesized using plasma enhance the chemical vapor deposition technique on substrate with suitable metal catalyst particles. This review provides an introduction to the concept of the growth of vertically aligned SWCNTs and covers advanced topics on the controlled synthesis of vertically aligned SWCNTs.

Synthesis of Graphene Using Thermal Chemical Vapor Deposition and Application as a Grid Membrane for Transmission Electron Microscope Observation (열화학증기증착법을 이용한 그래핀의 합성 및 투과전자현미경 관찰용 그리드 멤브레인으로의 응용)

  • Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • We present a method of graphene synthesis with high thickness uniformity using the thermal chemical vapor deposition (TCVD) technique; we demonstrate its application to a grid supporting membrane using transmission electron microscope (TEM) observation, particularly for nanomaterials that have smaller dimensions than the pitch of commercial grid mesh. Graphene was synthesized on electron-beam-evaporated Ni catalytic thin films. Methane and hydrogen gases were used as carbon feedstock and dilution gas, respectively. The effects of synthesis temperature and flow rate of feedstock on graphene structures have been investigated. The most effective condition for large area growth synthesis and high thickness uniformity was found to be $1000^{\circ}C$ and 5 sccm of methane. Among the various applications of the synthesized graphenes, their use as a supporting membrane of a TEM grid has been demonstrated; such a grid is useful for high resolution TEM imaging of nanoscale materials because it preserves the same focal plane over the whole grid mesh. After the graphene synthesis, we were able successfully to transfer the graphenes from the Ni substrates to the TEM grid without a polymeric mediator, so that we were able to preserve the clean surface of the as-synthesized graphene. Then, a drop of carbon nanotube (CNT) suspension was deposited onto the graphene-covered TEM grid. Finally, we performed high resolution TEM observation and obtained clear image of the carbon nanotubes, which were deposited on the graphene supporting membrane.

Synthesis of Vertically Aligned Single-Walled Carbon Nanotubes by Thermal Chemical Vapor Deposition (열 화학기상증착법을 이용한 수직 정렬된 단일벽 탄소나노튜브의 합성)

  • Jang, Sung-Won;Song, Woo-Seok;Kim, Yoo-Seok;Kim, Sung-Hwan;Park, Sang-Eun;Park, Chong-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Carbon nanotubes have emerged as a promising material for multifaceted applications, such as composited nanofiber, field effect transistors, field emitters, gas sensors due to their extraordinary electrical and physical properties. In particular, synthesis of vertically aligned carbon nanotubes with a high aspect ratio has recently attracted attention for many applications. However, mass production of high-quality single-walled carbon nanotubes is still remain elusive. In this study, an effect of chemical vapor deposition conditions, including catalyst thickness, feedstock flow rate, and growth temperature, on synthesis of carbon nanotube was systematically investigated.

Empirical relationship between band gap and synthesis parameters of chemical vapor deposition-synthesized multiwalled carbon nanotubes

  • Obasogie, Oyema E.;Abdulkareem, Ambali S.;Mohammed, Is'haq A.;Bankole, Mercy T.;Tijani, Jimoh. O.;Abubakre, Oladiran K.
    • Carbon letters
    • /
    • v.28
    • /
    • pp.72-80
    • /
    • 2018
  • In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on $CaCO_3$ was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature ($700^{\circ}C$), time (55 min), argon flow rate ($230.37mL\;min^{-1}$) and acetylene flow rate ($150mL\;min^{-1}$) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.

Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

  • Kim, Y.;Song, W.;Lee, S.Y.;Jung, W.;Kim, M.K.;Jeon, C.;Park, C.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.80-80
    • /
    • 2010
  • Graphene has attracted tremendous attention for the last a few years due to it fascinating electrical, mechanical, and chemical properties. Up to now, several methods have been developed exclusively to prepare graphene, which include micromechanical cleavage, polycrystalline Ni employing chemical vapor deposition technique, solvent thermal reaction, thermal desorption of Si from SiC substrates, chemical routes via graphite intercalation compounds or graphite oxide. In particular, polycrystalline Ni foil and conventional chemical vapor deposition system have been widely used for synthesis of large-area graphene. [1-3] In this study, synthesis of mono-layer graphene on a Ni foil, the mixing ratio of hydrocarbon ($CH_4$) gas to hydrogen gas, microwave power, and growth time were systemically optimized. It is possible to synthesize a graphene at relatively lower temperature ($500^{\circ}C$) than those (${\sim}1000^{\circ}C$) of previous results. Also, we could control the number of graphene according to the growth conditions. The structural features such as surface morphology, crystallinity and number of layer were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM), transmission electron microscopy (TEM) and resonant Raman spectroscopy with 514 nm excitation wavelength. We believe that our approach for the synthesis of mono-layer graphene may be potentially useful for the development of many electronic devices.

  • PDF

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Particle deposition on a rotating disk in application to vapor deposition process (VAD) (VAD공정 관련 회전하는 원판으로의 입자 부착)

  • Song, Chang-Geol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.61-69
    • /
    • 1998
  • Vapor Axial Deposition (VAD), one of optical fiber preform fabrication processes, is performed by deposition of submicron-size silica particles that are synthesized by combustion of raw chemical materials. In this study, flow field is assumed to be a forced uniform flow perpendicularly impinging on a rotating disk. Similarity solutions obtained in our previous study are utilized to solve the particle transport equation. The particles are approximated to be in a polydisperse state that satisfies a lognormal size distribution. A moment model is used in order to predict distributions of particle number density and size simultaneously. Deposition of the particles on the disk is examined considering convection, Brownian diffusion, thermophoresis, and coagulation with variations of the forced flow velocity and the disk rotating velocity. The deposition rate and the efficiency directly increase as the flow velocity increases, resulting from that the increase of the forced flow velocity causes thinner thermal and diffusion boundary layer thicknesses and thus causes the increase of thermophoretic drift and Brownian diffusion of the particles toward the disk. However, the increase of the disk rotating speed does not result in the direct increase of the deposition rate and the deposition efficiency. Slower flow velocity causes extension of the time scale for coagulation and thus yields larger mean particle size and its geometric standard deviation at the deposition surface. In the case of coagulation starting farther from the deposition surface, coagulation effects increases, resulting in the increase of the particle size and the decrease of the deposition rate at the surface.