• 제목/요약/키워드: thermal threshold

검색결과 295건 처리시간 0.031초

FPGA implementation using a CLAHE contrast enhancement technique in the termal equipment for real time processing

  • Jung, Jin-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • 제21권11호
    • /
    • pp.39-47
    • /
    • 2016
  • In this paper, we propose an approach for real time computation of rayleigh CLAHE using a FPGA. The contrast enhancement technique should be applied in thermal equipment having a low contrast image. And thermal equipment must be processed in real time. The CLAHE is an improved algorithm based Histogram Equalization, but the HW design is complex. A value greater than a given threshold in CLAHE should be equally distributed on the other histogram bin, this process requires iterations for the distribution. But implementation of this processing in the FPGA is constrained, so this section was implemented on the assumption of the histogram distribution or modified the operation process or implemented separately in the CPU. In this paper, we designed a distinct redistribution operation in two stages. So FPGA was designed for easy, this was designed to be distributed evenly without the assumptions and constraints. In addition, we have designed a CLAHE with the rayleigh distribution to the FPGA. The simulation shows that the proposed method provides a better image quality in the thermal image.

The Effect of Topical and Conduction Anesthesia by Phonophoresis with Lidocaine (Lidocaine 음파영동에 의한 표면마취 및 전달마취 효과)

  • Jeong, Dae-In;Yoon, Se-Won;Choi, Sug-Ju;Lee, Jung-Woo;Jeong, Jin-Gyu;Kim, Tae-Youl
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • 제4권1호
    • /
    • pp.63-83
    • /
    • 2006
  • This study conducted the following experiment to examine anesthetic effects of 500 kHz ultrasound with lidocaine. Clinical experiment was conducted to compare local anesthetic effects by ultrasound frequencies and drugs with 40 normal adults and it divided subjects into experimental group (I) applying only ultrasound, ointment group (II) applying only lidocaine, phonophoresis group of 1 MHz (III), phonophoresis group of 500 kHz lidocaine (IV) for pain threshold and nerve conduct experiments. Mechanical threshold was measured with von Frey monofilament, thermal pain threshold with halogen lamp and digital thermometer, action potential in median nerve with diagnostic electromyography before and after treatment, and at 30 min., 60 min., 90 min., and 120 min. after treatment. Results of this study can be summarized as follows. Topical anesthesia experiment showed that pain threshold of phonophoresis groups was significantly increased, but there were little differences in ultrasound frequency and drugs among phonophoresis groups. Conduction anesthesia experiment showed that phonophoresis group of 500 kHz using lidocaine had significant difference in pain threshold and sensory nerve conduction compared to ointment group and ultrasound group, but there was no great difference from other phonophresis groups and light nerve block effect was found. It was considered that application of 500 kHz ultrasound using lidocaine will be more effective in deep anesthesia or nerve block than 1 MHz ultrasound. However, researches considering various frequencies, intensities and application hours in low frequency areas including kHz ultrasound are needed to increase deep permeation of drugs.

  • PDF

The Spectral and Thermal Properties of Styrylquinolium Salts for Disc-Recordable Dyes

  • Song, Dong-Hyun;Kim, Jae-Pil;Lee, Chul-Joo;Park, Ki-Hong
    • Journal of Photoscience
    • /
    • 제8권3_4호
    • /
    • pp.113-117
    • /
    • 2001
  • Several styrylquinolium salts were synthesized to investigate their absorption and thermal properties, which had five different p-aminobenzene units and three different counter ions (iodide, perchlorate, and hexafluorophosphorate anion), respectively. Hydroxy, methoxy, and methyl group in the meta position to the amino group led to bathochromic shift, while Ν-ethyl-Ν-chloroethylamino unit instead of Ν,Ν-diethylamino unit resulted in hypsochromic shift. A dye having a methoxy group in the meta position to the amino group had the highest molar extinction coefficient ($\xi$), while a dye carrying chloro group in Ν-alkyl chains had the lowest $\xi$. The type of counter ions had no effect on spectral properties like the maximum absorption wavelength and $\xi$. All styryl dyes had exothermic peaks at decomposition in DSC curves. Among these styryl dyes, S2 series with perchlorate anions showed the strongest exothermic decomposition. From TGA spectra, S3 series with hexafluorophosphorate anions had the best thermal stability and the sharpest threshold at thermal decomposition.

  • PDF

A Prediction-Based Dynamic Thermal Management Technique for Multi-Core Systems (멀티코어시스템에서의 예측 기반 동적 온도 관리 기법)

  • Kim, Won-Jin;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제4권2호
    • /
    • pp.55-62
    • /
    • 2009
  • The power consumption of a high-end microprocessor increases very rapidly. High power consumption will lead to a rapid increase in the chip temperature as well. If the temperature reaches beyond a certain level, chip operation becomes either slow or unreliable. Therefore various approaches for Dynamic Thermal Management (DTM) have been proposed. In this paper, we propose a learning based temperature prediction scheme for a multi-core system. In this approach, from repeatedly executing an application, we learn the thermal patterns of the chip, and we control the temperature in advance through DTM. When the predicted temperature may go beyond a threshold value, we reduce the temperature by decreasing the operation frequencies of the corresponding core. We implement our temperature prediction on an Intel's Quad-Core system which has integrated digital thermal sensors. A Dynamic Frequency System (DFS) technique is implemented to have four frequency steps on a Linux kernel. We carried out experiments using Phoronix Test Suite benchmarks for Linux. The peak temperature has been reduced by on average $5^{\circ}C{\sim}7^{\circ}C$. The overall average temperature reduced from $72^{\circ}C$ to $65^{\circ}C$.

  • PDF

Modelling of Thermal Conductivity for High Burnup $UO_2$ Fuel Retaining Rim Region

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.201-210
    • /
    • 1997
  • A thermal conductivity correlation has been proposed which can be applied to high turnup fuel by considering both of thermal conductivity with turnup across fuel pellet and additional degradation at pellet rim due to very high porosity. In addition, a correlation has been developed that can estimate the porosity of rim region as a function of rim burnup under the assumptions that all the produced fission gases are retained in the in porosity and threshold pellet average burnup required for the formation of rim region is 40 MWD/㎏U. Rim width is correlated to rim burnup using measured data. For the RISO experimental data obtained at pellet average turnup of 43.5 MWD/㎏U for three linear heat generation rates of 30, 35 and 40 ㎾/m, radial temperature distributions ore calculated using the present correlation and compared with the measured ones. This comparison shows that the present correlation gives the best agreement with the measured data when it is combined with the HALDEN's correlation for thermal conductivity considering its degradation with burnup. Another comparison with the HALDEN's measured fuel centerline temperature as a function of burnup at 25 ㎾/m up to about 44 MWD/㎾U also suggest that the present correlation yields the best agreement when it is combined with the HALDEN's thermal conductivity.

  • PDF

Effects of Interlayer Formation and Thermal Treatment on Field-emission Properties of Carbon Nanotube Micro-tips (계면층 형성 및 열처리가 탄소 나노튜브 미세팁의 전계방출 특성에 미치는 영향)

  • Kim, Bu-Jong;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • 제12권2호
    • /
    • pp.1-6
    • /
    • 2013
  • The effects of interlayer formation and thermal treatment on the field-emission properties of carbon nanotubes (CNTs) were investigated. The CNTs were prepared on tungsten (W) micro-tip substrates using the electrophoretic deposition (EPD) method. The interlayers, such as aluminum (Al) and hafnium (Hf) were coated on the W-tips prior to CNT deposition and after the deposition of CNTs all the species were thermally treated at $700^{\circ}C$ for 30 min. The field-emission properties of CNTs were significantly improved by thermal treatment. The threshold electric field for igniting the electron emission was decreased and the emission current was increased. The Raman spectroscopy results indicated that this was attributed mainly to the enhancement of CNTs by thermal treatment. Also, the CNTs deposited on the interlayers showed the remarkably improved results in the long-term emission stability, especially when they were thermally treated. The X-ray photoelectron spectroscopy (XPS) measurement confirmed that this was resulted from the formation of the additional cohesive forces between the CNTs and the underlying interlayers.

Characteristics of $CH_4$ Decomposition by Plasma (플라즈마 이용 메탄 분해 특성)

  • Kim, Kwan-Tae;Lee, Dae-Hoon;Cha, Min-Suk;Ryu, Jeong-In;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • 제10권4호
    • /
    • pp.24-32
    • /
    • 2005
  • Various types of plasma source applied in $CH_4$ decomposition process are compared. DBD by pulse and AC power, spark by pulse and AC power, rotating arc and hollow cathode plasma are chosen to be compared. The results show that $CH_4$ conversion per given unit power is relatively high in hollow cathode plasma and rotating arc that induces rather high temperature condition and that is why both thermal dehydration and plasma induced decomposition contribute for the overall process. In case of DBD wherein high temperature electron and low temperature gas molecule coexist, the process shows low conversion rate, for in rather low temperature condition the contribution of thermal dehydration is lowered. Selectivity of $C_2H_6$ and $C_2H_2$ is shown to be a good parameter of the relative contribution of plasma chemistry in the overall process. From the results we concluded that required condition of plasma source for a cost effective and high yield $CH_4$ decomposition is to have characteristics of both thermal plasma and non thermal plasma in which temperature is high above a certain threshold state for thermal dehydration and electron induced collision is maximized in the same breath.

  • PDF

Thermal Imaging Fire Detection Algorithm with Minimal False Detection

  • Jeong, Soo-Young;Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2156-2170
    • /
    • 2020
  • This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.

Effect of Electrical Stimulation Level on Quantitative Sensory Test Induced Erythema by UV Radiation (전기자극수준이 자외선에 의한 홍반의 정량적 감각검사에 미치는 효과)

  • Kim, Su-Hyon;Kim, Hyun-Jin
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • 제10권2호
    • /
    • pp.1-6
    • /
    • 2012
  • Purpose : This study is to investigate the modulatory effects to the ultraviolet induced erythema of pain processing system. Methods : Thirty six healthy volunteers were divided into none treatment group (n=6), indomethacine group (n=6), subsensory level electrical stimulation group (n=6), sensory level electrical stimulation group (n=6), motor level electrical stimulation group (n=6), noxious level electrical stimulation group (n=6). Subjects were induced erythema for three times minimal erythema dose (MED) at upper arm of dermatome C6 level. Each experimental group had mechanical pain threshold (MPT), electrical pain threshold (EPT), thermal pain threshold (TPT). Results : This study revealed that we observed that pain thresholds were significantly correlated with each other in pain processing system. The effect of electrical stimulation levels evaluates were shown to be significant differences pain control effect in electrical stimulation group (sensory, motor level electrical stimulation groups) more than indomethacine group, subsensory level and control group. Conclusion : In this study, it was found that the effect of ultraviolet induced erythema of pain control by modulatory electrical stimulation.

Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites

  • Wu, Shi-Hong;Natsuki, Toshiaki;Kurashiki, Ken;Ni, Qing-Qing;Iwamoto, Masaharu;Fujii, Yoshimichi
    • Advanced Composite Materials
    • /
    • 제16권3호
    • /
    • pp.195-206
    • /
    • 2007
  • Carbon nanofiber (CNF)/unsaturated polyester resin (UPR) was prepared by a solvent evaporation method, and the temperature dependency of electrical conductivity was investigated. The CNF/UPR composites had quite a low percolation threshold due to CNF having a larger aspect ratio and being well dispersed in the UPR matrix. The positive temperature coefficient (PTC) was found in the CNF/UPR composites and it showed stronger effect around the percolation threshold. The electrical resistance of the CNF/UPR composites decreased and had lower temperature dependency with increasing numbers of thermal cycles.