• Title/Summary/Keyword: thermal stress relaxation

Search Result 121, Processing Time 0.025 seconds

Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application (액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.

Thermal Comfort and the Physiological and Psychological Effects of Spending Time in Broad-Leaved Forests in Summers (여름철 활엽수림에서의 휴식이 온열환경 쾌적성 및 인체의 생리ᐧ심리적 반응에 미치는 영향)

  • Juhyeon Kim;Injoon Song;Choyun Kim;Dawou Joung;Yunjeong Yi;Bum-Jin Park;Chorong Song
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.544-553
    • /
    • 2023
  • The purpose of this study was to reveal the thermal comfort and physiological and psychological effects of spending time in broad-leaved forests in suumer. Thirty-one university students (with an average age of 21.4 ± 2.1 years) participated in the study, and a within-subjects experimental design methodology was used. The participants moved to an experimental site (with a crown closure of 76.6%) or a control site (25.9%), sat on a chair to eliminate the impact of movement, and rested for 5 minutes with closed eyes. At this time, thermal comfort, heart rate variability, heart rate, and forehead temperature were continuously measured. After that, blood pressure and pulse rate were measured, and a subjective evaluation was conducted. As a result, spending time at an experimental site showed a statistically significant decrease in the predicted mean vote and the percentage of dissatisfied values, enhancement of parasympathetic nerve activity, decrease of forehead temperature, diastolic blood pressure, heart rate, pulse rate, and improvement of personal thermal sensation (thermal sensation vote and comfort sensation vote). In conclusion, it was found that a forest with high crown closure reduces thermal stress and induces physiological and psychological relaxation.

Erosion properties of plasma sprayed zirconia Based coatings (지르코니아계 용사 코팅층의 Erosion 특성)

  • 신종한;임상규;임대순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.346-353
    • /
    • 2001
  • Zirconia powder containing 3 mol% yttria(3Y-PSZ) with and with out Fe$_2$O$_3$ addition was coated on tile cast iron substrate by plasma spraying method. The erosion experiments were performed at temperatures from $25^{\circ}C$ to $600^{\circ}C$. A gas blast type erosion tester was used to examine erosion behavior of the specimens. The results of 3Y-PSZ coatings showed that tile erosion rate had maximum value at 40$0^{\circ}C$. It coincided with tile results of phase transformation tetragonal phase to monoclinic phase caused by low temperature thermal degradation. The tensile stress relaxation and the micro-hardness improvement significantly influenced on the erosion rate at $600^{\circ}C$. In the case of Fe$_2$O$_3$ added 3Y-PSZ coatings, the erosion rate of tested at $25^{\circ}C$ showed maximum value at 5.0 mol% Fe$_2$O$_3$ added coating. This tendency is caused by the improvement of mechanical properties and the tensile residual stress. The erosion rate at 200'c and 400'L showed significantly decrease by Fe203 addition. This decrease is believed to be the stabilization of the tetragonal phase and the increase of micro-hardness.

  • PDF

Thermal Properties and Crystallization Behaviors of Poly(ethylene terephthalate) at Various Annealing Conditions (열처리 조건에 따른 폴리(에틸렌 테레프탈레이트)의 열적 특성 및 결정화 거동)

  • 류민영;배유리
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • The thermal properties and crystallization behaviors of poly(ethylene terephthalate) (PET) were investigated by controlling the annealing conditions of PET sample, such as relative humidity, temperature, and time. The variations of moisture content, glass transition temperature ($T_g$) and cold crystallization temperature ($T_{\propto}$) were examined after annealing the PET sample. Subsequently crystallization process was performed with the annealed PET specimen, and then the degree of crystallinity and heat distortion temperature (HDT) of variously crystallized PET specimen were examined. Residual stress relaxation in the injection molded PET sample after annealing was also observed through polarized films. Moisture content in the PET specimen increased up to 6000 ppm with increasing the relative humidity, temperature, and time of annealing. $T_g$ and $T_{\propto}$ of the annealed PET specimen decreased with increasing moisture content. The degree of crystallinity increased as increasing moisture content in the PET specimen. However for same moisture content, the degree of crystallinity varied with annealing conditions. The relaxations of residual stress in the PET sample differed from annealing conditions, and the maximum degree of crystallinity increased with decreasing residual stress in the PET sample.

Effect of Cure System on the Life-time of Hydrogenated NBR O-ring using Intermittent Compression Stress Relaxation(CSR) (간헐 압축응력 완화를 이용한 가교 구조가 hydrogenated NBR 오링의 수명에 미치는 영향 연구)

  • Lee, Jin-Hyok;Bae, Jong-Woo;Kim, Jung-Su;Hwang, Tae-Jun;Choi, Yu-Seok;Baek, Kwang-Sae;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.144-151
    • /
    • 2011
  • Intermittent CSR testing was used to investigate the degradation of a hydrogenated NBR(HNBR) O-rings, and also the prediction of its life-time. The cure system of HNBR O-ring was controlled as sulfur cure and peroxide cure system. An intermittent CSR jig was designed taking into consideration the O-ring's environment under use. The testing allowed observation of the effects of friction, heat loss, and stress relaxation by the Mullins effect. Degradation of O-rings by thermal aging was observed between 100 and $120^{\circ}C$. In the temperature range of $100-120^{\circ}C$, O-rings showed linear degradation behavior and satisfied the Arrhenius relationship. The activation energy of HNBR-S was about 70.6 kJ/mol. From Arrhenius plots, predicted life-times of HNBR-S O-ring were 31.1 years and 33.7 years for 50% and 40% failure conditions, respectively. In case of HNBR-P, the activation energy was about 72.1kJ/mol, and predicted life-times were 34.0 years and 36.5 years for 50% and 40% failure conditions, respectively. The peroxide cure system showed slower degradation rate and higher activation energy than the sulfur cure system.

Bond Strength of Wafer Stack Including Inorganic and Organic Thin Films (무기 및 유기 박막을 포함하는 웨이퍼 적층 구조의 본딩 결합력)

  • Kwon, Yongchai;Seok, Jongwon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.619-625
    • /
    • 2008
  • The effects of thermal cycling on residual stresses in both inorganic passivation/insulating layer that is deposited by plasma enhanced chemical vapor deposition (PECVD) and organic thin film that is used as a bonding adhesive are evaluated by 4 point bending method and wafer curvature method. $SiO_2/SiN_x$ and BCB (Benzocyclobutene) are used as inorganic and organic layers, respectively. A model about the effect of thermal cycling on residual stress and bond strength (Strain energy release rate), $G_c$, at the interface between inorganic thin film and organic adhesive is developed. In thermal cycling experiments conducted between $25^{\circ}C$ and either $350^{\circ}C$ or $400^{\circ}C$, $G_c$ at the interface between BCB and PECVD $ SiN_x $ decreases after the first cycle. This trend in $G_c$ agreed well with the prediction based on our model that the increase in residual tensile stress within the $SiN_x$ layer after thermal cycling leads to the decrease in $G_c$. This result is compared with that obtained for the interface between BCB and PECVD $SiO_2$, where the relaxation in residual compressive stress within the $SiO_2$ induces an increase in $G_c$. These opposite trends in $G_cs$ of the structures including either PECVD $ SiN_x $ or PECVD $SiO_2$ are caused by reactions in the hydrogen-bonded chemical structure of the PECVD layers, followed by desorption of water.

Thermal Stability and Mechanical Interfacial Properties of DGEBA/PMR-15 Blend System Initiated by Cationic Latent Thermal Catalyst (잠재성 양이온 개시제를 이용한 DGEBA/PMR-15 블렌드계의 열안정성 및 기계적 계면 특성에 관한 연구)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.5 no.1
    • /
    • pp.3-11
    • /
    • 2004
  • In this work, the cure behaviors of the DGEBA/PMR-15 blends initiated by N-benzylpyrazinium hexafluoroantimonate (BPH) as a cationic latent catalyst were performed in DSC and DMA analyses. And, the thermal stabilities were carried out by TGA analysis and their mechanical interfacial properties of blends were measured in the context of critical stress intensity factor ($K_{IC}$). As a result, the curing activation energy ($E_a$) determined from Ozawa's equation in DSC and the relaxation activation energy ($E_r$) from DMA were increased with increasing PMA-15 content. Also, the thermal stabilities obtained from the integral procedural decomposition temperature (IPDT) and the glass transition temperature ($T_g$) were highly improved with increasing the PMR-15 content, which were probably due to the high heat resistance. And, the $K_{IC}$ showed a similar behavior with $E_a$, which was attributed to the improving of the interfacial adhesion or hydrogen bondings between intermolecular chains.

  • PDF

Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux

  • Alzahrani, Faris S.;Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.217-225
    • /
    • 2020
  • In this paper, the thermoelastic interactions in a two-dimension porous body are studied. This problem is solved by using the Green and Lindsay (GL) generalized thermoelasticity model under fractional time derivative. The derived approaches are estimated. with numeral results which are applied to the porous mediums in simplifying geometrical. The bounding plane surface of the present half-space continuum is subjected to a pulse heat flux. We use the Laplace-Fourier transforms methods with the eigenvalues approach to solve the problem. The numerical solutions for the field functions are obtained numerically using the numerical Laplace inversion technique. The effects of the fractional parameter and the thermal relaxation times on the temperature field, the displacement field, the change in volume fraction field of voids distribution and the stress fields have been calculated and displayed graphically and the obtained results are discussed.

Compressibility Factor Effect on the Turbulence Heat Transfer of Super-critical Carbon Dioxide by an Elliptic-blending Second Moment Closure (타원혼합모형을 이용한 초임계상태 이산화탄소의 압축성계수에 의한 난류열전달 특성)

  • Han, Seong-Ho;Seo, Jeong-Sik;Shin, Jung-Kun;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.40-50
    • /
    • 2007
  • The present contribution describes the application of elliptic-blending second moment closure to predict the gas cooling process of turbulent super-critical carbon dioxide flow in a square cross-sectioned duct. The gas cooling process under super-critical state experiences a drastic change in thermodynamic and transport properties. Redistributive terms in the Reynolds stress and turbulent heat flux equations are modeled by an elliptic-blending second moment closure in order to represent strongly non-homogeneous effects produced by the presence of walls. The main feature of Durbin's elliptic relaxation second moment closure that accounts for the nonlocal character of pressure-velocity gradient correlation and the near-wall inhomogeneity guaranteed by the elliptic blending second moment closure.