• Title/Summary/Keyword: thermal storage system

Search Result 652, Processing Time 0.028 seconds

Performance of Natural Circulation Hot Water System with Flat-Plate Solar Collectors (평만형 태양열 집열기 를 설치한 자연 순환식 급탕시스템 의 성능 에 관한 연구)

  • 윤석범;전문헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.579-589
    • /
    • 1985
  • The storage tank of the natural-circulation-solar-hot-water system equipped with flat-plate solar collectors is located at higher elevation than the solar collectors. Therefore, the heat loss from the system due to a reversed flow during the night-time is an important factor as well as the day-time thermal performance of the system. The thermal performance of the natural-circulation-solar-hot-water system with flat-plate solar collectors during the day-time depends mainly on the heat collecting efficiency of the solar collectors, whereas its thermal performance during the night-time depends on the system configuration , such as the elevation of the water storage tank with respect to the solar collectors and the piping connections between the storage tank and the solar collectors, as well as thermo-physical properties of the circulating fluid. In the present work, a computer program has been developed to simulate a typical natural-circulation-solar-hot-water-system, and a series of simulation tests have been carried out with the computer program to examine the thermal performance of the system during the day-time as well as the hight-time. In addition , a series of experiment have been conducted under a real sun condition using a natural-circulation-solar-hot-water-system constructed and installed at the KAIST building to compare with the results obtained from computer simulations.

A Study on the Method of Applying Snow Thermal Storage System through the Analysis of Foreign Cases (해외 사례분석을 통한 '눈 이용 냉방시스템'의 도입 방안)

  • Aum, Tae-Yun;Hong, Min-Ho;Chun, Jae-Hong;Kweon, Dae-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.514-519
    • /
    • 2009
  • The purpose of this study is to show the method of applying snow thermal storage system through the analysis of the cases in Japan. The results were as follows. (1) The systems in Japan were installed at the location whose annual mean air temperature was $14.6^{\circ}C$ or below and annual snowfall was 59 cm or above. (2) By analyzing the characteristics of the systems, meltwater circulation system with a backup chiller was confirmed to be most suitable for Korea. (3) For the first time in Korea, the system with the snow storage of 500 ton was designed at Muju after analyzing regional climate characteristics.

  • PDF

Performance Analysis on a Heat Pump System using Waste Heat (폐열이용 열펌프시스템의 성능에 관한 연구)

  • Park, Youn Cheol;Song, Lei;Ko, Gwang Soo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.53-60
    • /
    • 2018
  • This study was conducted for analysis of a heat pump system using waste heat in an enclosed space such as a green house. The model was developed with mathematical equations in literature and Engineering Equation Solver (EES) was used to get the solution of the developed equations. The simulation results have 5% of reliability comparing the results with actual test data of heat pump system's dynamic operation. The operating performance of the system was calculated with variation of working fluid temperature in the thermal storage tank such as $25^{\circ}C$, $35^{\circ}C$, $45^{\circ}C$ and $55^{\circ}C$. As a result, the system's the highest total heating capacity shows 280 kWh and the storage tank's operating time decreased as the starting storage tank's temperature was high.

Solar tower combined cycle plant with thermal storage: energy and exergy analyses

  • Mukhopadhyay, Soumitra;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.29-45
    • /
    • 2016
  • There has been a growing interest in the recent time for the development of solar power tower plants, which are mainly used for utility scale power generation. Combined heat and power (CHP) is an efficient and clean approach to generate electric power and useful thermal energy from a single heat source. The waste heat from the topping Brayton cycle is utilized in the bottoming HRSG cycle for driving steam turbine and also to produce process steam so that efficiency of the cycle is increased. A thermal storage system is likely to add greater reliability to such plants, providing power even during non-peak sunshine hours. This paper presents a conceptual configuration of a solar power tower combined heat and power plant with a topping air Brayton cycle. A simple downstream Rankine cycle with a heat recovery steam generator (HRSG) and a process heater have been considered for integration with the solar Brayton cycle. The conventional GT combustion chamber is replaced with a solar receiver. The combined cycle has been analyzed using energy as well as exergy methods for a range of pressure ratio across the GT block. From the thermodynamic analysis, it is found that such an integrated system would give a maximum total power (2.37 MW) at a much lower pressure ratio (5) with an overall efficiency exceeding 27%. The solar receiver and heliostats are the main components responsible for exergy destruction. However, exergetic performance of the components is found to improve at higher pressure ratio of the GT block.

The Operation Characteristics and Cost Analysis of an Ice Thermal Storage System (빙축열 냉방시스템의 운전특성 및 비용 분석)

  • Ahn Young Hwan;Kang Byung Ha;Kim Suk Hyun;Lee Dae Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.156-164
    • /
    • 2005
  • A comparative analysis of an ice storage system has been performed on the operation cost for the four control strategies, i.e., chiller priority and chiller downstream, chiller priority and chiller upstream, storage priority and chiller upstream, storage priority and chiller downstream. Main components of the ice storage system are an ice-on-coil storage tank and a screw compressor chiller. With the simulation program, the operation cost has been evaluated from the economics of an ice storage system. It is found that the operation cost of the ice storage system is strongly dependent on the control strategy, i.e., chiller priority or storage priority, but less affected by the arrangement method, i.e., chiller upstream or chiller downstream. In case of the maximum load day, the control strategy with chiller priority and chiller upstream is supposed to obtain the reduction of operation cost. However, it is found that the control strategy with storage priority and chiller downstream is the best economical operation for most summer seasons except the maximum load day.

Technical Trend of Receiver for Solar Power Tower (타워용 태양열발전 시스템 흡수기 기술동향)

  • Kim, Jong-Kyu;Kim, Jin-Soo;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.161-164
    • /
    • 2008
  • For the development of solar thermal power tower plant from the early 80' to today, various kinds of receiver have been tested and evaluated. Most of 1st generation receiver used water/steam as a working fluid to operate steam turbine and now the first commercial solar power tower PS-10 also makes saturated steam. However, to increase thermal efficiency of storage system and to obtain practical use of solar energy, molten salt system have been used from THEMIS project in France at 1984. The Solar Tres plant of 17 MWe power generation will be constructed in Spain and have plan to operate 24 hours in summer. The air volumetric receiver system can be integrated with combined cycle of gas turbine and HRSG and also with steam turbine easily. Therefore, related researches to develop higher efficient solar power tower plant and to operate with stable are widely performed in the world.

  • PDF

Design Modification of a Thermal Storage Tank of Natural-Circulation Solar Water Heater for a Pressurized System (자연순환형 태양열 온수기 축열조의 압력식 설계 개조)

  • Boo, Joon-Hong;Jung, Eui-Guk
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.45-54
    • /
    • 2007
  • For a conventional natural-circulation type solar water heater, the pressure head is limited by the height between the storage tank and hot water tap. Therefore, it is difficult to provide sufficient hot water flow rate for general usage. This study deals with a design modification of the storage tank to utilize the tap-water pressure to increase hot-water supply Based on fluid dynamic and heat transfer theories, a series of modeling and simulation is conducted to achieve practical design requirements. An experimental setup is built and tested and the results are compared with theoretical simulation model. The storage tank capacity is 240 l and the outer diameter of piping was 15 mm. Number of tube turns tested are 5, 10, and 15. Starting with initial storage tank temperature of $80^{\circ}C$, the temperature variation of the supply hot water is investigated against time, while maintaining minimum flow rate of 10 1/min. Typical results show that the hot water supply of minimum $30^{\circ}C$ can be maintained for 34 min with tap-water supply pressure of 2.5 atm, The relative errors between modeling and experiments coincide well within 10% in most cases.

Experimental Study on Calcium Chloride Impregnated Perlite for Thermochemical Heat Storage (염화칼슘이 함침된 펄라이트를 이용한 화학축열에 대한 실험적 연구)

  • Jung, Han Sol;Kim, Hak Seong;Hwang, Kyung Yub;Kim, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.123-127
    • /
    • 2015
  • Thermochemical heat storage is a cutting-edge technology which can balance the energy usage between supplies and demands. Recent studies have suggested that thermochemical heat storage has significant advantages, compared to other storage methods such as latent heat storage or sensible heat storage. Nevertheless, ongoing research and development studies showed that the thermochemical heat storage has some serious problems. To bring the thermochemical heat storage method into market, we introduce experimental setup with composite material using perlite that supports calcium chloride sorbent. Also, to compare thermal properties with composite material, we used pure thermochemical material. Then, we found that the composite material has higher heat storage density by mass than pure calcium chloride. Moreover, it can be easily regenerated, which was impossible in the pure thermochemical materials.

Numerical Study on using Immersion Cooling for Thermal Management of ESS (Energy Storage System) (ESS(Energy Storage System) 열관리를 위한 액침 냉각 활용에 대한 수치해석 연구)

  • Jeonggyun Ham;Nayoung You;Myeongjae Shin;Honghyun Cho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • The introduction of the sector coupling concept has expanded the scope of ESS utilization, resulting in the importance of thermal management of ESS. To ensure the safe use of the lithium-ion batteries that are used in ESS, it is important to use the batteries at the optimal temperature. To examine the utilization of liquid cooling in ESS, numerical study was conducted on the thermal characteristics of 21700 battery modules (16S2P array) during liquid cooling using Novec-649 as insulating fluid. The NTGK model, an MSMD model in ANSYS fluent, was used to investigate thermal characteristics on the battery modules with liquid immersion cooling. The results show that the final temperature of the battery module discharged at 5 C-rate is 68.9℃ using natural convection and 48.3℃ using liquid cooling. However, the temperature difference among cells in the battery module was up to 0.5℃ when using natural convection cooling and 5.8℃ when using liquid cooling, respectively, indicating that the temperature difference among cells was significantly increased when liquid cooling was used. As the mass flow rate increased from 0.01 kg/s to 0.05 kg/s, the average temperature of the battery module decreased from 48.3℃ to 38.4℃, confirming that increasing the mass flow rate of the insulating fluid improves the performance of liquid immersion cooling. Although partial liquid immersion cooling has a high cooling performance compared to natural convection cooling, the temperature difference between modules was up to 8.9℃, indicating that the thermal stress of the battery cells increased.