• Title/Summary/Keyword: thermal spray process

Search Result 199, Processing Time 0.03 seconds

Effect of MML on the Wear Behavior of Al/SiCp Composites (Al/SiCp 복합재료의 마모거동에 미치는 MML의 영향)

  • Kim, Yeong-Sik;Kim, Kyun-Tak
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • Al-based composites reinforced with SiC particulate were fabricated using a thermal spray process, and dry sliding wear behavior of the composites was investigated. Pre-mixed Al and SiC powders were sprayed on an A16061 substrate by flame spraying, and dry sliding wear test were performed under various sliding speed and applied load conditions against ${Al_2}{O_3}$ ball. Wear behavior of the composites was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). And build-up mechanism of MML on the worn surface of the composites was examined. It was revealed that these MML was formed of debris from the contact surface of the composites and effected to wear behavior of the composites protecting the contact surface of the composites.

Thermoelectric Properties of p- type FeSi2 Processed by Mechanical Alloying and Plasma Thermal Spraying (기계적 합금화 p-type FeSi2의 플라즈마 용사 성형 및 열전 특성)

  • Choi Mun-Gwan;Ur Soon-Chul;Kim IL-Ho
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.218-223
    • /
    • 2004
  • P-type $\beta$-FeSi$_2$ with a nominal composition of $Fe_{0.92}Mn_{0.08}Si_2$ powders has been produced by mechanical alloying process. As-milled powders were spray dried and consolidated by atmospheric plasma thermal spraying as a rapid sintering process. As-milled powders were of metastable state and fully transformed to $\beta$-$FeSi_2$ phase by subsequent isothermal annealing. However, as-thermal sprayed $Fe_{0.92}Mn_{0.08}Si_2$ consisted of untransformed mixture of $\alpha$-$Fe_2Si_{5}$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce transformation to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase. Isothermal annealing at $845^{\circ}C$ in vacuum gradually led to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties of $\beta$-$FeSi_2$ materials before and after isothermal annealing were evaluated. Seebeck coefficient increased and electric conductivity decreased with increasing annealing time due to the phase transition from metallic phases to semiconducting phases. Thermoelectric properties showed gradual increment, but overall properties appeared to be inferior to those of vacuum hot pressed specimens.

The Effect of High Velocity Oxygen Fuel Thermal Spray Coating on Fatigue Crack Growth Behavior for Welded SM490B (SM490B 용접부의 피로균열 성장 거동에 미치는 초고속 용사코팅 효과)

  • Yoon, Myung-Jin;Choi, Sung-Jong;Cho, Won-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.99-106
    • /
    • 2006
  • High velocity oxygen-fuel thermal spray coating of the WC-Co cermet material is a well-established process for modifying the surface properties of the structural components exposed to the corrosive and wear attacks, and also these coating are well-known method to improve the fatigue strength of material. In this study, HVOF coated SM490B are prepared to evaluation of the effect of coating on tension and fatigue crack growth behavior. The pre-crack of the fatigue crack growth test specimens machined at deposited material area, heat affected zone and boundary, respectively. Through these test, the following results are obtained: 1) Tensile strength was about 498 MPa, and fracture occurred on base metal area. 2) The fatigue crack of coated specimens propagated more rapidly than non-coated specimen in all specimens. 3) In the same coating thickness specimens, the specimens with pre-crack at boundary more rapidly propagated than the specimens with pre-crack at HAZ and deposited material area. These results can be used as basic data in a structural integrity evaluation of rolled SM490B weldments considering HVOF coating.

Manufacturing and Macroscopic Properties of Cold Sprayed Cu-Ga Coating Material for Sputtering Target

  • Jin, Young-Min;Jeon, Min-Gwang;Park, Dong-Yong;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.245-252
    • /
    • 2013
  • This study attempted to manufacture a Cu-Ga coating layer via the cold spray process and to investigate the applicability of the layer as a sputtering target material. In addition, changes made to the microstructure and properties of the layer due to annealing heat treatment were evaluated, compared, and analyzed. The results showed that coating layers with a thickness of 520 mm could be manufactured via the cold spray process under optimal conditions. With the Cu-Ga coating layer, the ${\alpha}$-Cu and $Cu_3Ga$ were found to exist inside the layer regardless of annealing heat treatment. The microstructure that was minute and inhomogeneous prior to thermal treatment changed to homogeneous and dense with a more clear division of phases. A sputtering test was actually conducted using the sputtering target Cu-Ga coating layer (~2 mm thickness) that was additionally manufactured via the cold-spray coating process. Consequently, this test result confirmed that the cold sprayed Cu-Ga coating layer may be applied as a sputtering target material.

Fracture Analysis of Plasma Spray Coating by Classification of AE Signals (AE파형분류에 의한 용사코팅재의 파손해석)

  • Kim, G.S.;Park, K.S.;Hong, Y.U.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.24-30
    • /
    • 2002
  • The deformation and fracture behaviors of both Al2O3 and Ni 4.5wt.%Al plasma thermal spray coating were investigated by an acoustic emission method. Plasma thermal spray coating is formed by a process in which melted particles flying with high speed towards substrate, then crash and spread on the substrate surface cooled and solidified in a very short time, stacking of the particles makes coating. A tensile test is conducted on notch specimens in a stress range below the elastic limit of substrate. A bendind test is done on smooth specimens. The waveforms of AE generated from the both test coating specimens can be classified by FFT analysis into two types which low frequency(type I) and high frequency(type II). The type I waveform is considered to corresponds exfoliation of coating layers and type II waveform corresponds the plastic deformation of notch tip. The fracture of the coating layers can estimate by AE event and amplitude, because AE features increase when the deformation generates.

  • PDF

Effects of Process Parameters on the Wear Behavior of Thermally Sprayed Ni-based Hard Coatings (니켈기 경질 용사코팅의 마모거동에 미치는 공정조건의 영향)

  • Kim, Kyun-Tak;Kim, Yeong-Sik
    • Tribology and Lubricants
    • /
    • v.26 no.3
    • /
    • pp.157-161
    • /
    • 2010
  • This study investigated the effects of spray parameters on wear behavior of the Ni-based hard coatings fabricated by thermal spray process. The experiment was designed by an orthogonal array, the Ni-based hard coatings were fabricated according to this experimental design. The wear test was performed on these coatings using ball-on-disk wear tester. The ANOVA was used to analyze the effects of spray parameters on the wear rate of these coatings, as a result, oxygen gas flow and acetylene gas flow were determined as main factors effected on the wear rate. The effects of these two factors on wear behavior were observed by using SEM and EDX.

Effect of process parameter and post heat treatment on the properties of aluminium bronze arc spray coating (알루미늄청동 아크 용사층의 성질에 미치는 용사 공정변수 및 후열처리 영향)

  • 김태호;박영구;윤정모;송요승
    • Journal of Surface Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.329-338
    • /
    • 2000
  • In this study, as an effort to improve the brittlement of coating layer, aluminum bronze coatings formed on steel substrates by arc jet spray process were subjected to post heat treatment. After each treatment, mechanical properties such as hardness, and UTS, and microstructural characterization of the specimens were investigated. The results showed that the hardness in the coatings slightly decreased with increasing heat treatment tine and temperature. The UTS of as-sprayed coatings was 4.31kgf/$\textrm{mm}^2$ and slightly increased to 5.51kgf/$\textrm{mm}^2$ after heat treatment at $900^{\circ}C$ for 120min. On the other hand, the interdiffusion of copper and aluminum particles after heat treatment lead to decrease of the porosity density and increase the bond strength.

  • PDF

Hafnium Carbide Protective Layer Coatings on Carbon/Carbon Composites Deposited with a Vacuum Plasma Spray Coating Method

  • Yu, Hui-Il;Kim, Ho-Seok;Hong, Bong-Geun;Sin, Ui-Seop;Mun, Se-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.237.2-237.2
    • /
    • 2016
  • A pure hafnium-carbide (HfC) coating layer was deposited onto carbon/carbon (C.C) composites using a vacuum plasma spray system. By adopting a SiC buffer layer, we successfully integrated C.C composites with a $100-{\mu}m-thick$ protective coating layer of HfC. Compared to the conventional chemical vapor deposition process, the HfC coating process by VPS showed increased growth rate, thickness, and hardness. The growth behavior and morphology of HfC coatings were investigated by FE-SEM, EDX, and XRD. From these results, it was shown that the addition of a SiC intermediate layer provided optimal surface conditions during the VPS procedure to enhance adhesion between C.C and HfC (without delamination). The thermal ablation test results shows that the HfC coating layer perfectly protected inner C.C layer from thermal ablation and oxidation. Consequently, we expect that this ultra-high temperature ceramic coating method, and the subsequent microstructure that it creates, can be widely applied to improve the thermal shock and oxidation resistance of materials under ultra-high temperature environments.

  • PDF

Ceramic Coating by Electron Beam PVD for Nanos-Tructure Control (나노구조 제어를 위한 EB-PVD법에 의반 세라믹스 코팅)

  • Matsbara, Hideaki
    • Ceramist
    • /
    • v.9 no.6
    • /
    • pp.24-29
    • /
    • 2006
  • Electron beam physical vapor deposition (EB-PVD) process has currently been applied to thermal barrier coatings (TBCs) for aircraft engines. Due to unique columnar structure, EB-PVD TBCs have advantages in resistances to thermal shock and thermal cycle for their applications, compared to films prepared by plasma spray By the EB-PVD equipment, we successfully obtained yttria-stabilized zirconia (YSZ) layer which has columnar and feather like structure including a large amount of nano size pores and gaps. The EB-PVD technique has been developed for coating functional perovskite type oxides such as (La, Sr)MnO3. Electrode properties have been improved by interface and structural control.

  • PDF