DOI QR코드

DOI QR Code

Manufacturing and Macroscopic Properties of Cold Sprayed Cu-Ga Coating Material for Sputtering Target

  • Received : 2013.06.01
  • Accepted : 2013.08.12
  • Published : 2013.08.28

Abstract

This study attempted to manufacture a Cu-Ga coating layer via the cold spray process and to investigate the applicability of the layer as a sputtering target material. In addition, changes made to the microstructure and properties of the layer due to annealing heat treatment were evaluated, compared, and analyzed. The results showed that coating layers with a thickness of 520 mm could be manufactured via the cold spray process under optimal conditions. With the Cu-Ga coating layer, the ${\alpha}$-Cu and $Cu_3Ga$ were found to exist inside the layer regardless of annealing heat treatment. The microstructure that was minute and inhomogeneous prior to thermal treatment changed to homogeneous and dense with a more clear division of phases. A sputtering test was actually conducted using the sputtering target Cu-Ga coating layer (~2 mm thickness) that was additionally manufactured via the cold-spray coating process. Consequently, this test result confirmed that the cold sprayed Cu-Ga coating layer may be applied as a sputtering target material.

Keywords

References

  1. M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg and A. N. Tiwari: Thin Solid Films., 431 (2003) 58.
  2. M. Nouiri, Z. B. Ayadi, K. Khirouni, S. Alaya, K. Djessas and S. Yapi: Mater. Sci. Eng. C, 27 (2007) 1002. https://doi.org/10.1016/j.msec.2006.07.022
  3. K. Sakurai, R. Hunger, N. Tsuchimochi, T. Baba, K. Matsubara, P. Fons, A. Yamada, T. Kojima, T. Deguchi, H. Nadanishi and S. Niki: Thin Solid Films., 431 (2003) 6.
  4. T. Nakano, T. Suzuki, N. Ohnuki and S. Baba: Thin Solid Films., 334 (1998) 192. https://doi.org/10.1016/S0040-6090(98)01142-0
  5. J. W. Lim, J. W. Bae, Y. F. Zhu, S. Lee, K. Mimura and M. Isshiki: Surf. Coat. Techno., 201 (2006) 1899. https://doi.org/10.1016/j.surfcoat.2006.01.009
  6. J. Sarkar, P. McDonald and P. Gilman: Thin Solid Films., 517 (2009) 1970. https://doi.org/10.1016/j.tsf.2008.10.065
  7. M. Moriyama, T. Morita, S. Tsukimoto, M. Shimada and M. Murakami: Mater. Trans., 46 (2005) 1036. https://doi.org/10.2320/matertrans.46.1036
  8. K. J. Kardokus, C. T. Wu, Parfeniuk, L. Chrstopher and E. B. Jane: U.S. Patent 6, 645,427. Nov. 11, 2003 "Copper Sputtering Target Assembly and Method of Making same".
  9. C. F. Lo, P. Mcdonald, D. Draper and P. Gilman: J. Eelectro. Mater., 34 (2005) 1468. https://doi.org/10.1007/s11664-005-0152-z
  10. H. Thomasv and V. Steenkiste: Key Eng. Mater., 197 (2001) 59. https://doi.org/10.4028/www.scientific.net/KEM.197.59
  11. A. Papyrin: Adv. Mater. Proc., 159 (2001) 49.
  12. H. J. Kim, C. H. Lee and Y. G. Kweon: Journal of KWS., 20 (2002) 53 (Korean).
  13. Y. M. Jin, J. H. Cho, D. Y. Park, J. H. Kim and K. A. Lee: J. Therm. Spray Techn., 20 (2011) 497. https://doi.org/10.1007/s11666-010-9552-6
  14. S. H. Kwon, D. Y. Park, H. J. Kim and K. A. Lee: J. Kor. Inst. Met. & Mater.,. 45 (2007) 216 (Korean).
  15. W. Kroemmer, P. Heinrich and P. Richter: Thermal Spray 2003, B. R. Marple and C. Moreau: Ed., ASM International, Orlando, FL, USA., (2003) 97.
  16. O. Volobujeva, M. Altosaar, J. Raudoja, E. Mellikov, M. Grossberg, L. Kaupmees and P. Barvinschi: Solar Energy Mater. & Solar Cell., 93 (2009) 11. https://doi.org/10.1016/j.solmat.2008.01.007
  17. S. H. Chang, J. C. Choi, S. W. Choi and I. H. Oh, Kor. J. Mater. Res., 18 (2008) 181 (Korean). https://doi.org/10.3740/MRSK.2008.18.4.181
  18. B. Gabbitas, P. Cao, S. Raynova and D. L. Zhang: Maters. Sci. Forum., 534 (2007) 805.
  19. T. Stoltenhoff, C. Borchers, F. Gartner and H. Kreye: Surf. Coat. Tech., 200 (2006) 4947. https://doi.org/10.1016/j.surfcoat.2005.05.011
  20. H. Pop and T. B. Massalski: Acta Metall., 13 (1965) 1021. https://doi.org/10.1016/0001-6160(65)90013-1
  21. S. H. Kwon, D. Y. Park, D. Y. Lee, K. J. Euh and K. A. Lee: J. Kor. Inst. Met. & Mater., 46 (2008) 182 (Korean).

Cited by

  1. Manufacturing and Properties of CGI-based Composite Coating Layer Utilizing a Warm Spray Process and Cu-Ga and Cu-In Mixed Powders vol.21, pp.3, 2014, https://doi.org/10.4150/KPMI.2014.21.3.229
  2. Manufacturing of Cu Repair Coating Material Using the Kinetic Spray Process and Changes in the Microstructures and Properties by Heat Treatment vol.21, pp.5, 2014, https://doi.org/10.4150/KPMI.2014.21.5.349