DOI QR코드

DOI QR Code

Freeze Drying for Porous Mo with Sublimable Vehicles of Eutectic System

공정 계 동결제 슬러리의 동결건조 공정에 의한 Mo 다공체 제조

  • Lee, Gyu-Tae (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Seo, Han Gil (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이규태 (서울과학기술대학교 신소재공학과) ;
  • 서한길 (서울과학기술대학교 신소재공학과) ;
  • 석명진 (강원대학교 재료금속공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2013.08.02
  • Accepted : 2013.08.21
  • Published : 2013.08.28

Abstract

Freeze drying for porous Mo was accomplished by using $MoO_3$ powder as the source and camphor-naphthalene eutectic system as the sublimable material. Eutectic composition of camphor-naphthalene slurries with the initial $MoO_3$ content of 5 vol%, prepared by milling at $55^{\circ}C$ with a small amount of oligomeric dispersant, was frozen at $-25^{\circ}C$. The addition of dispersant showed improvement of dispersion stability in slurries. Pores were generated subsequently by sublimation of the camphor-naphthalene during drying in air for 48 h. To convert the $MoO_3$ to metallic Mo, the green body was hydrogen-reduced at $750^{\circ}C$, and sintered at $1100^{\circ}C$ for 2 h. The sintered samples, frozen by heated Teflon cylinder, showed large pores with the size of about 40 ${\mu}m$ which were aligned parallel to the sublimable vehicles growth direction. The formation of unidirectionally aligned pores is explained by the rejection and accumulation of solid particles in the serrated solid-liquid interface.

Keywords

References

  1. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  2. H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091. https://doi.org/10.1016/j.pmatsci.2006.09.001
  3. T. Ohji and M. Fukushima: Intern. Mater. Rev., 57 (2012) 115. https://doi.org/10.1179/1743280411Y.0000000006
  4. Z.-Y. Deng, J.-F. Yang, Y. Beppu, M. Ando and T. Ohji: J. Am. Ceram. Soc., 85 (2002) 1961. https://doi.org/10.1111/j.1151-2916.2002.tb00388.x
  5. N.-H. Kim, H. Song, S.-C. Choi and Y.-H. Choa: J. Kor. Powd. Met. Inst., 16 (2009) 262 (Korean). https://doi.org/10.4150/KPMI.2009.16.4.262
  6. P.S. Liu and K.M. Liang: J. Mater. Sci., 36 (2001) 5059. https://doi.org/10.1023/A:1012483920628
  7. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  8. T. Fukasawa, Z.-Y. Deng, M. Ando, T. Ohji and Y. Goto: J. Mater. Sci., 36 (2001) 2523. https://doi.org/10.1023/A:1017946518955
  9. B.-H. Yoon, E.-J. Lee, H.-E. Kim and Y.-H. Koh: J. Am. Ceram. Soc., 90 (2007) 1753. https://doi.org/10.1111/j.1551-2916.2007.01703.x
  10. S.-T. Oh, S.-Y. Chang and M.-J. Suk: Trans. Nonferrous Met. Soc. China, 22 (2012) s688. https://doi.org/10.1016/S1003-6326(12)61787-7
  11. N.-Y. Kwon and S.-T. Oh: J. Kor. Powd. Met. Inst., 19 (2012) 259 (Korean). https://doi.org/10.4150/KPMI.2012.19.4.259
  12. K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.
  13. P.M. Robinson, H.J. Rossell and H.G. Scott: Mol. Cryst. Liq. Cryst., 10 (1970) 61. https://doi.org/10.1080/15421407008083487
  14. M.-J. Suk and K. Leonartz: J. Crystal Growth, 213 (2000) 141. https://doi.org/10.1016/S0022-0248(00)00357-2
  15. O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre: Talanta, 50 (1999) 445. https://doi.org/10.1016/S0039-9140(99)00129-0
  16. W. Lee and S.-T. Oh: J. Kor. Powd. Met. Inst., 19 (2012) 446 (Korean). https://doi.org/10.4150/KPMI.2012.19.6.446
  17. N.O. Shanti, K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 89 (2006) 2444. https://doi.org/10.1111/j.1551-2916.2006.01094.x
  18. K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 87 (2004) 1859.
  19. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966. https://doi.org/10.1038/nmat2571

Cited by

  1. Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture vol.25, pp.4, 2018, https://doi.org/10.4150/KPMI.2018.25.4.336