• Title/Summary/Keyword: thermal spray process

Search Result 199, Processing Time 0.027 seconds

Synthesis Of Nd2Fe14B Powders by Spray-Drying and Reduction-Diffusion Process (분무건조와 환원-확산 공정에 의한 Nd2Fe14B 분말의 합성)

  • 최철진;허민선;박병연;김성덕;하국현;김병기;박용호
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.436-442
    • /
    • 2003
  • The magnetic Nd-Fe-B powders were prepared by a thermochemical method, consisting of the processes of spray-drying, debinding, milling, H$_2$-reduction, Ca-reduction, and washing. The optimum process conditions were studied by microstructural and thermal analysis. The resultant Nd-Fe-B powder was spherical with the size of 1 ${\mu}{\textrm}{m}$. Effects of the process parameters of each step on the microstructure of the powders were investigated, and their magnetic properties were evaluated.

Preparation of dense $BaMgAl_{10}O_{17}:Eu^{2+}$ particles and their surface treatment

  • Lee, Dae-Won;Boo, Jin-Hyo;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1499-1502
    • /
    • 2005
  • Dense $BaMgAl_{10}O_{17}:Eu^{2+}$ phosphor particles with a spherical shape have been synthesized through spray pyrolysis method using basic aluminum nitrate precursor as a spray solution. This $BaMgAl_{10}O_{17}:Eu^{2+}$ particles prepared by the spray pyrolysis have shown the stronger emission intensity compared to the commercially-available $BaMgAl_{10}O_{17}:Eu^{2+}$. However, thermal stability of the BAM:Eu b lue phosphor is very poor due to changing from $Eu^{2+}$ to $Eu^{3+}$ at the thermal process, so brightness of the phosphor decreases. To improve the thermal stability of the dense BAM:Eu phosphor, the spherical BAM:Eu particles were coated with pure $BaMgAl_{10}O_{17}$ layer using the hydrolysis reaction in a solution system. The synthesized powders were characterized by XRD, SEM and PL. On the other hand, the emission properties of the BAM:Eu phosphors coated with $BaMgAl_{10}O_{17}$ layer before and after thermal treatment at $500^{\circ}C$ for 30 min were estimated under VUV excitation. The brightness of the coated phosphor was higher than that of the uncoated phosphor. Also, the coating thickness of BAM layer in the BAM:Eu particles was optimized.

  • PDF

Fundamental Study on the Formation of Nanostructured Coating Layer (나노구조 용사코팅층의 형성에 관한 기초적 연구)

  • Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.90-95
    • /
    • 2005
  • The wire-arc process is a low-cost thermal spray method simply utilizes electrical energy to melt the feedstock wire. It is more userful for field applications, especially to coat large surface area. In this paper, a special Fe-based alloy coatings by using the wire-arc process were developed. Nanoscale composite coatings were achieved either during spraying or through a post heat treatment. As-sprayed Fe-based alloy coatings had been an amorphous matrix structure, after heating to $700^{\circ}C$ for 10 minutes a solid state transformation occurred in the some fraction of amorphous matrix which resulted in the formation of nanostructured recrystallized phase. Scanning electron microscopy (SEM) and field emotional scanning electron microscope(FE-SEM) were applied to analyze the microstructure of the coatings. Additionally hardness and bend resistance of the Fe-based alloy coatings were examined, and these results were compared with those of partially stabilized zirconia(PSZ) coatings by using the plasma spray process.

  • PDF

Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Fang, W.;Joo, Y.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.4
    • /
    • pp.170-174
    • /
    • 2007
  • High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature $25^{\circ}C\;and\;500^{\circ}C$. In coating process a small portion of hard WC decomposes to less hard $W_2C$, W and C at the temperature higher than its decomposition temperature $1,250^{\circ}C$ resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at $25^{\circ}C$ to 0.65-0.76 at $500^{\circ}C$ due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as $Al_2O_3,\;Cr,\;Cr_2O_3$ and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.

A Study in the High Temperature Wear and Thermal Shock Resistance of the Functional Gradient Thermal Barrier Coating by Air Plasma Spray with ZrO$_2$ (APS법에 의한 경사기능성 지르코니아 열장벽 피막의 열충격 및 고온내마모 특성에 관한 연구)

  • 한추철;박만호;송요승;변응선;노병호;이구현;권식철
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.272-280
    • /
    • 1997
  • The Thermal Barrier Coation(TBC) to improve the that barrier and wear resistant propenrty in high temperature ofthe aircraftength between the accumlation of the aircraft engine and the automobile engine has usually the two layer structure. One is a creamic top layer for heat insulation and the other is a metal bond layer to facilitate the bond strength between the top ceramic layer and the substrate. But, the coated layers should be peeled off because of the accumulation of the thermal stress by the differance of the thermal expantion coefficient between metal and ceramics in a hrat cyclic environment. In this study, the intermediate layer by plasm spray process was introduced to reduce the thermal stress. The powders of plasm spray coating were the Yttria Stabilized Zirconia (YSZ), the Magnesia Stabillized Zirconia(MSZ) and NiCrAlY. the intermediate layer was sprayed with the powders of the bond cast for the purpose of test were executed. The high temperature wear resistance tends to decreasnceee wear and thermal shock test were exeucuted. The high temperature were resistance of the YSZ TBC is better that of the MSZ TBC. The wearrsistance tends to decrease accoring to incresing the temperature between $400^{\circ}C$to $600^{\circ}C$. The thermal shock life of the 3 layer TBC with YSZ top casting was the most outstanding thermal shock rsisstasnce. This means that the intermediate layer should play an importnat roll to alleviate the diffrerence of the thermal expansion coef frcients between metallic layer and cermics layer.

  • PDF

Measurement of the Coating Temperature Evolution during Atmospheric Plasma Spraying (대기압 플라즈마 용사 공정에서의 기판 코팅 온도 영향 연구)

  • Lee, Kiyoung;Oh, Hyunchul
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.624-629
    • /
    • 2020
  • For more effective temperature control of atmospheric plasma sprayed (APS) zirconia thermal barrier coating, understanding of the parameters, which influence the substrate temperature, is essential and also more numerical results based on the experimental data are required. This study aims to investigate the substrate temperature control during an APS process. The APS process deals with air-cooled systems, plasma-gas flow, powder feed rate, robot velocity, and substrate effect on the substrate surface temperature control during the process. This systematic approach will help to handle the temperature control, and thus lead to better coating quality.

A Study on Durability Characteristics for Plungers of Conventional Ceramic and Surface Modification by Powder Coating Using High Velocity Oxygen Fuel Thermal Spray (기존 세라믹 및 초고속 용사 분말피막 표면개질 플런저의 내구성 특성에 관한 연구)

  • Bae, Myung-whan;Park, Byoung-ho;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.285-293
    • /
    • 2016
  • The high velocity oxygen fuel(HVOF) thermal spray is a kind of surface modification techniques to produce the sprayed coating layer. This process is to form the coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. The efficiency of thermal spraying is dropped, however, because the semi-molten powder in a spray process become a factor that degrades the mechanical property by the formed pore within the coating layer. Therefore, it is necessary to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesive force. In this study, to improve the wear resistance, corrosion resistance and heat resistance, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps used in ironworks are manufactured with STS $420J_2$ and are coated by the powders of WC-Co-Cr and WC-Cr-Ni including the WC of high hardness using a HVOF thermal sprayer developed in this laboratory. These are called by the surface-modified plungers. The surface roughness, hardness, and surface and cross-sectional microstructure of these two surface-modified and conventional ceramic plungers are measured and compared before operation with after operation for 100 days. It is found that the values of centerline average surface roughness and maximum height for conventional ceramic plunger are 9.5 to 10.8 and 5.2 to 5.7 times higher than those of surface-modified ones coated by WC-Co-Cr and WC-Cr-Ni because the fine tops and bottoms on surface roughness curve of conventional ceramic plunger are approximately 100 times higher than those of surface-modified ones. In addition, the pores and scratches in the surface microstructure are considerably formed in the order of conventional ceramic, WC-Cr-Ni and WC-Co-Cr surface-modified plungers. The greater the WC content of high hardness powder is less the change in the plunger surface.

The effect of air and spray turbulence in a D.I. diesel engine on the flame progress (直接噴射式 디이젤機關의 燃燒室形狀과 火焰의 發達)

  • ;;Ohta, Motoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.44-52
    • /
    • 1987
  • For the favorable performance of a D.I. diesel engine, it is important to improve the mixture formation process and the ensuing early stage of combustion process. In the present paper, high speed photography was employed to investigate the effectiveness of a cavity digged in a piston crown for some more useful utilization of air. The cavity would function to improve mixing of fuel and air by the increase of turbulence of air and by the impingement of fuel spray on the cavity wall. The results obtained are summarized as follows: (1) From an aspect of thermal efficiency, it is effective to inject the spray tangentially to the cavity wall to enlarge the area of spray evaporation. (2) some deductions obtained from previous investigations using a hot air stream duct are supported by the present results. For example, it is effective for the quick development of flames throughout the combustion chamber to mix the evaporated fuel of main spray with the intermediates brought about by the early stage of combustion of the preceded auxiliary fuel spray.

A Methodological Study of the Wear-Resistant Property Improvement on the Thermal Spray Coating for Capstan (Capstan용 용사코팅의 내마모 특성 향상 방안)

  • 어순철
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.63-70
    • /
    • 2000
  • Thermal spray coating process has proven to be effective at producing hard, dense, wear resistance coatings on the relatively mild substrates. Among several spraying techniques, HVOF (High Velocity Oxygen Fuel) and plasma coating processes, which are preferentially used for the wear resistance application such as capstans, have been applied in this study. The effects of pre-treatment, it-process and post-treatment parameters on the wear and mechanical properties of WC+12%Co, Cr3C2 and Al2O3 powder coatings have been investigated and correlated with the microstructures. The results indicated that the carbide coating was more preferable to the oxide coatings and the post-treatments consisting of vacuum annealing and sealing on carbide coatings led to significant improvements in wear resistance, adhesive strength and coating phase stabilization over the other processing techniques in this application.

  • PDF

Wear Behavior of Al-based Composites according to Reinforcements Volume Fraction (강화상의 분율에 따른 알루미늄기 복합재료의 마모거동)

  • Lee, K.J.;Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.77-82
    • /
    • 2011
  • SiC particulate reinforced Al matrix composites with different SiC volume fractions were fabricated by thermal spray process. And the dry sliding wear test were performed on these composites using the applied load of 10 N, rotational speed of 30 rpm, radius of rotation 15 mm. Wear tracks on the Al/SiC composites were investigated using scanning electron microscope(SEM) and energy dispersive spectroscopy (EDS). It was observed that wear behavior of Al/SiC composites and formation of MML was changed dramatically according to reinforcement volume fraction.