• Title/Summary/Keyword: thermal sources finite element

Search Result 17, Processing Time 0.02 seconds

Optimization for the Cylindrical Structure with Multi-Holes Under Thermal Loading (열하중을 받는 다공원통구조물의 최적화)

  • Lee Young-Shin;Choi Young-Jin;Kang Young-Hwan;Lee Jong-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1509-1516
    • /
    • 2004
  • During fuel irradiation tests, all parts of cylindrical structure with multiple holes act as heat sources due to fussion heat and ${\gamma}$-flux. The high temperature is especially generated in the center of pellet. Because of the high temperature, many problems occur, such as melting of pellet and declining of heat transfer between cladding and coolant. In this paper, it is attempted to minimize the temperature of pellet using optimization method. For thermal and optimization analysis of structure, the finite element method code, ANSYS 5.7 is used. Through the optimum design process, the temperature of SBT diminished 10% and the temperature of OBT diminished 18%.

Evaluation of Mechanical Characteristic and Residual Stress for Railway Wheel (철도차량 차륜의 기계적 특성 및 잔류응력평가)

  • Seo, Jung Won;Kwon, Suk Jin;Lee, Dong Hyeong;Jun, Hong Kyu;Park, Chan Kyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.783-790
    • /
    • 2014
  • Railway wheels and axles are the most critical parts of the railway rolling stock. The wheel carry axle loads and guide the vehicles on the track. Therefore, the contact surface of wheel are subjected to wear and fatigue process. The wheel damage can be divided into three types; wear, contact fatigue failure and thermal crack due to braking. Therefore, in the contact surface between the wheel and the rail, the materials are heat treated to have a specific hardness. The manufacturing quality of the wheel have a considerable influence on the formation of tread wear and damage. Also, the residual stress on wheel is formed during the manufacturing process is one of the main sources of the damage. In this paper, the mechanical characteristic and the residual stress according to wheel material have been evaluated by applying finite element analysis and conducting mechanical tests.

Temperature Analysis of the Cylindrical Structure with Multi-Holes of HANARO Irradiation Test (하나로 조사시험용 다공 원통헝 구조물의 온도해석)

  • Choi Young-Jin;Kang Young-Hwan;Lee Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.405-412
    • /
    • 2004
  • During the irradiation tests of material and fuel rod, all components of the cylindrical structure with multiple holes act like heat sources due to high gamma heat and fission heat. The objective of this study is to formulate the general solution for the temperature distribution to estimate the thermal integrity of structure during irradiation tests. For the temperature distribution analysis, the two-dimensional heat conduction theory is used. The unmerical analysis is performed by the commercial finite element analysis code, ANSYS 6.1. If the cylindrical structure with hole number would not exceed three holes, the analysis results and finite element results are good agreement together. For the structure with four holes, the discrepancy between FE results and analysis results of the structural temperature distribution is increased.

Optimization for the Nuclear Fuel Irradiation Capsule under Thermal Loading (열하중하에서 핵연료조사캡슐에 대한 최적화)

  • Choi, Young-Jin;Lee, Young-Shin;Kang, Young-Hwan;Lee, Joong-Woong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.564-569
    • /
    • 2003
  • During fuel irradiation tests, all parts of cylindrical structure with multiple holes act as heat sources due to fussion heal and ${\gamma}-flux$. The high temperature is especially generated over $2500^{\circ}C$ in the center of pellet. Due to the high temperature, many problems occur, such as melting of pellet and declining of heat transfer between cladding and coolant. [n this study, it is attempted 10 minimize the temperature of pellet using optimization method about geometric variables. For thermal and optimization analysis or structure. the finite element method code. ANSYS 5.7 is used. In this procedure. subproblem approximation method is used to the optimization methods. Through the optimum design process, the temperature of sealed basket type is reduced from $2537^{\circ}C$ to $2181^{\circ}C$ and the temperature of open basket type is reduced from $2560^{\circ}C$ to $2106^{\circ}C$.

  • PDF

Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly

  • Li, Ying;Kikuchi, Noboru;Saitou, Kazuhiro
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.19-29
    • /
    • 2003
  • Disassembly is a fundamental process needed for component reuse and material recycling in all assembled products. Integral attachments, also known as 'snap' fits, are favored fastening means in design for assembly (DFA) methodologies, but not necessarily a favored choice for design for disassembly. In this paper, design methods of a new class of integral attachments are proposed, where the snapped joints can be disengaged by the application of localized heat sources. The design problem of reversible integral attachments is posed as the design of compliant mechanisms actuated with localized thermal expansion of materials. Topology optimization technique is utilized to obtain conceptual layout of snap-fit mechanisms that realizes a desired deformation of snapped features for joint release. Two design approaches are attempted and design results of each approach are presented, where the geometrical configuration extracted from optimal topologies are simplified to enhance the manufacturability for the conventional injection molding technologies. To maximize the magnitude of deformation, a design scheme has been proposed to include boundary conditions as design variables. Final designs are verified using commercial software for finite element analysis.

Analysis on Temperature Distribution and Current-Carrying Capacity of GIL Filled with Fluoronitriles-CO2 Gas Mixture

  • Chen, Geng;Tu, Youping;Wang, Cong;Cheng, Yi;Jiang, Han;Zhou, Hongyang;Jin, Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2402-2411
    • /
    • 2018
  • Fluoronitriles-$CO_2$ gas mixtures are promising alternatives to $SF_6$ in environmentally-friendly gas-insulated transmission lines (GILs). Insulating gas heat transfer characteristics are of major significance for the current-carrying capacity design and operational state monitoring of GILs. In this paper, a three-dimensional calculation model was established for a GIL using the thermal-fluid coupled finite element method. The calculated results showed close agreement with experimentally measured data. The temperature distribution of a GIL filled with the Fluoronitriles-$CO_2$ mixture was obtained and compared with those of GILs filled with $CO_2$ and $SF_6$. Furthermore, the effects of the mixture ratio of the component gases and the gas pressure on the temperature rise and current-carrying capacity of the GIL were analyzed. Results indicated that the heat transfer performance of the Fluoronitriles-$CO_2$ gas mixture was better than that of $CO_2$ but worse than that of $SF_6$. When compared with $SF_6$, use of the Fluoronitriles-$CO_2$ gas mixture caused a reduction in the GIL's current-carrying capacity. In addition, increasing the Fluoronitriles gas component ratio or increasing the pressure of the insulating gas mixture could improve the heat dissipation and current-carrying capacity of the GIL. These research results can be used to design environmentally-friendly GILs containing Fluoronitriles-$CO_2$ gas mixtures.

TheMagneticFieldDistributionAnalysisandOpticalCharacteristicsfortheRing-ShapedElectrodelessFluorescentLamp. (환형무전극형광램프의자계분포해석과광학적특성에관한연구)

  • Jo Ju-Ung;Lee Jong-Chan;Choi Yong-Sung;Kim Yong-Kap;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.6
    • /
    • pp.255-261
    • /
    • 2005
  • Recently, the RF inductive discharge or inductively coupled plasma continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology. To the point of lighting sources, the ring-shaped electrodeless fluorescent lamps utilizing an inductively coupled plasma have been objects of interest and research during the last decades, mainly because of their potential for extremely long life, high lamp efficacies, rapid power switching response. In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 kHz and some specific conditions. The electromagnetic field in the ferrite core was shown to be high and symmetric. An LS-100 luminance meter and a Darsa-2000 spectrum analyzer were used in the experiment. According to data on the lamp tested using high magnetic field ferrite, the optical and thermal wave fields were shown to be high around the ring-shaped electrodeless fluorescent lamp. The optical or light field was high at the center of the bulb rather than around the ferrite core. The light conditions of the bulb were assumed to be complex, depending on the condition of the filler gas, the volume of the bulb, and the frequency of the inverter. Our results have shown coupling between the gas plasma and the field of the light emitted to be nonlinear.