• Title/Summary/Keyword: thermal sensor

Search Result 928, Processing Time 0.029 seconds

Study on the Enhanced Specific Surface Area of Mesoporous Titania by Annealing Time Control: Gas Sensing Property (열처리 시간에 따른 메조기공 타이타니아의 비표면적 향상 연구: 가스센싱 특성 변화)

  • Hong, M.-H.;Park, Ch.-S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • Mesoporous ceramic materials were applied in various fields such as adsorbent and gas sensor because of low thermal conductivity and high specific surface area properties. This structure could be divided into open-pore structure and closed-pore structure. Although closed-pore structure mesoporous ceramic materials have higher mechanical property than open-pore structure, it has a restriction on the application because the increase of specific surface area is limited. So, in this work, specific surface area of closed-pore structure $TiO_2$ was increased by anneal time. As increased annealing time, crystallization and grain growth of $TiO_2$ skeleton structured material in mesoporous structure induced a collapse and agglomeration of pores. Through this pore structural change, pore connectivity and specific surface area could be enhanced. After anneal for 24 hrs, porosity was decreased from 36.3% to 34.1%, but specific surface area was increased from $48m^2/g$ to $156m^2/g$. CO gas sensitivity was also increased by about 7.4 times due to an increase of specific surface area.

Preliminary Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Park, Chan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.102-102
    • /
    • 2014
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument onboard NEXTSat-1 which is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions in order to study the cosmic star formation history in local and distant universe. After the Preliminary Design Review, we have fixed major specifications of the NISS. The off-axis optical design with 15cm apertureis optimized to obtain a wide field of view ($2deg.{\times}2deg.$), while minimizing the sensitivity loss. The opto-mechanical structure of the NISS was designed to be safe enough to endure in the launching condition as well as the space environment. The tolerance analysis was performed to cover the wide wavelength range from 0.95 to $3.8{\mu}m$ and to reduce the degradation of optical performance due to thermal variation at the target temperature, 200K. The $1k{\times}1k$ infrared sensor is operated in the dewar at 80K stage. We confirmed that the NISS can be cooled down to below 200K in the nominal orbit through a radiative cooling. Here, we report the preliminary design of the NISS.

  • PDF

The Flight Model of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Won-Kee;Kim, Il-Joong;Park, Youngsik;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Mingyu;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.64.3-65
    • /
    • 2016
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared instrument optimized to the Next Generation of small satellite series (NEXTSat). The capability of both imaging and low spectral resolution spectroscopy in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the main observational targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design is optimized to have a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. Two linear variable filters are used to realize the imaging spectroscopy with the spectral resolution of ~20. The mechanical structure is considered to endure the launching condition as well as the space environment. The compact dewar is confirmed to operate the infrared detector as well as filters at 80K stage. The electronics is tested to obtain and process the signal from infrared sensor and to communicate with the satellite. After the test and calibration of the engineering qualification model (EQM), the flight model of the NSS is assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. Here, we report the test results of the flight model of the NISS.

  • PDF

Study on the Property of Guided Wave Signal Analysis according to Defect Shape of Small Size (소구경 튜브 결함 형태에 따른 유도초음파 신호 해석 특성에 관한 연구)

  • Gil, Doo-Song;Ahn, Yeon-Shik;Jung, Gye-Jo;Park, Sang-Gi;Kim, Yong-Gun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.410-417
    • /
    • 2012
  • Currently domestic thermal and nuclear power plants are comprised of many type's condenser and steam generator tubes to produce the electricity of good quality. There are some methods to inspect these tubes in the event that several defects were discovered in these facilities. Among many non-destructive methods, we used guided wave to inspect the soundness of tubes, because this method is very fast to detect the defect and very simple to install the equipment and also, can inspect up to the long range at a fixed point. Also, this method has a drawback that does not detect a very small size defect. So, we made an effort to overcome this drawback through the experimentation and signal analysis according to the size and shape of the defect through the manufacture of various artificial cracks capable to generate within the small size tube in the study and we anticipate that these detect limits can be overcome along with the development of the signal processing and manufacturing technology of the sensor for the inspection.

Status Report of the Flight Model of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Moon, Bongkon;Park, Sung-Joon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Won-Kee;Kim, Il-Joong;Park, Youngsik;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Mingyu;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2017
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared spectro-photometric instrument optimized to the Next Generation of small satellite series (NEXTSat). To achieve the major scientific objectives for the study of the cosmic star formation in local and distant universe, the spectro-photometric survey covering more than 100 square degree will be performed. The main observational targets will be nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optics was developed to cover a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $2.5{\mu}m$, which were revised based upon the recent test and evaluation of the NISS instrument. The mechanical structure were tested under the launching condition as well as the space environment. The signal processing from infrared sensor and the communication with the satellite were evaluated after the integration into the satellite. The flight model of the NSS was assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. The accurate calibration data were obtained in our test facilities. Here, we report the test results of the flight model of the NISS.

  • PDF

Detection Method for Bean Cotyledon Locations under Vinyl Mulch Using Multiple Infrared Sensors

  • Lee, Kyou-Seung;Cho, Yong-jin;Lee, Dong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.263-272
    • /
    • 2016
  • Purpose: Pulse crop damage due to wild birds is a serious problem, to the extent that the rate of damage during the period of time between seeding and the stage of cotyledon reaches 45.4% on average. This study investigated a method of fundamentally blocking birds from eating crops by conducting vinyl mulching after seeding and identifying the growing locations for beans to perform punching. Methods: Infrared (IR) sensors that could measure the temperature without contact were used to recognize the locations of soybean cotyledons below vinyl mulch. To expand the measurable range, 10 IR sensors were arranged in a linear array. A sliding mechanical device was used to reconstruct the two-dimensional spatial variance information of targets. Spatial interpolation was applied to the two-dimensional temperature distribution information measured in real time to improve the resolution of the bean coleoptile locations. The temperature distributions above the vinyl mulch for five species of soybeans over a period of six days from the appearance of the cotyledon stage were analyzed. Results: During the experimental period, cases where bean cotyledons did and did not come into contact with the bottom of the vinyl mulch were both observed, and depended on the degree of growth of the bean cotyledons. Although the locations of bean cotyledons could be estimated through temperature distribution analyses in cases where they came into contact with the bottom of the vinyl mulch, this estimation showed somewhat large errors according to the time that had passed after the cotyledon stage. The detection results were similar for similar types of crops. Thus, this method could be applied to crops with similar growth patterns. According to the results of 360 experiments that were conducted (five species of bean ${\times}$ six days ${\times}$ four speed levels ${\times}$ three repetitions), the location detection performance had an accuracy of 36.9%, and the range of location errors was 0-4.9 cm (RMSE = 3.1 cm). During a period of 3-5 days after the cotyledon stage, the location detection performance had an accuracy of 59% (RMSE = 3.9 cm). Conclusions: In the present study, to fundamentally solve the problem of damage to beans from birds in the early stage after seeding, a working method was proposed in which punching is carried out after seeding, thereby breaking away from the existing method in which seeding is carried out after punching. Methods for the accurate detection of soybean growing locations were studied to allow punching to promote the continuous growth of soybeans that had reached the cotyledon stage. Through experiments using multiple IR sensors and a sliding mechanical device, it was found that the locations of the crop could be partially identified 3-5 days after reaching the cotyledon stage regardless of the kind of pulse crop. It can be concluded that additional studies of robust detection methods considering environmental factors and factors for crop growth are necessary.

Photoelectric Properties of PbTe/CuPc Bilayer Thin Films (PbTe/CuPc 이층박막의 광전 특성)

  • Lee, Hea-Yeon;Kang, Young-Soo;Park, Jong-Man;Lee, Jong-Kyu;Jeong, Jung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.67-72
    • /
    • 1998
  • The crystallized CuPc and PbTe films are formed by thermal evaporation and pulsed ArF excimer laser ablation. Structural and electrical properties of thin film is observed by XRD and current-voltage(I-V) curves. From XRD analysis, both PbTe and CuPc thin films show a-axis oriented structure. For the measurement of photovoltaic effect, the transverse current-voltage curve of CuPc/Si, PbTe/Si and PbTe/CuPc/Si junctions have been analyzed in the dark and under illumination. The PbTe/CuPc/Si junction exthibits a strong photovoltaic characteristics with short circuit current($J_{sc}$) of $25.46\;mA/cm^{2}$ and open-circuit voltage($V_{oc}$) of 170 mV. Quantum efficiency and power conversion efficiency are calculated to be 15.4% and $3.46{\times}10^{-2}$, respectively. Based on the results of QE and ${\eta}$, the photocurrent process of PbTe/CuPc/Si junction can be explained as following three effective steps; photocarrier generation in the CuPc layer, carrier separation at PbTe/CuPc interface, and finally a transportation of electrons through the PbTe layer.

  • PDF

Ferroelectric Properties of Pb[(Zr,Sn)Ti]NbO3 Thin Films with Various Composition Ratio (조성비에 따른 Pb[(Zr,Sn)Ti]NbO3 박막의 강유전 특성)

  • Choi, Woo-Chang;Choi, Hyek-Hwan;Lee, Myoung-Kyo;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • Ferroelectric $Pb_{0.99}[(Zr_{0.6}Sn_{0.4})_{1-x}Ti_x]_{0.98}Nb_{0.02}O_3$(PNZST) thin films were deposited by a RF magnetron sputtering on $(La_{0.5}Sr_{0.5})CoO_3$(LSCO)/Pt/Ti/$SiO_2$/Si substrate using a PNZST target with excess PbO of 10 mole%. The crystallinity and electrical properties of the thin films with various composition ratio were investigated. The thin films deposited at the substrate temperature of $500^{\circ}C$ and the power of 80 W were crystallized to a perovskite phase after rapid thermal annealing(RTA) at $650^{\circ}C$ for 10 seconds in air. A PNZST thin films with Ti of 10 mole% showed the good crystallinity and ferroelectric properties. The remanent polarization and coercive field of the PNZST capacitor were about $20\;{\mu}C/cm^2$ and 50 kV/cm, respectively. The reduction of the polarization after $2.2{\times}10^9$ switching cycles was less than 10%.

A New Organic Modifiers for Anti-Stiction (부착방지를 위한 새로운 표면 개질 물질)

  • Kim, Bong-Hwan;Chun, Kuk-Jin;Lee, Yoon-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.102-110
    • /
    • 2002
  • The chemical and mechanical characteristics of a new surface modifier, dichlorodimethysilane (DDMS, $(CH_3)_3SiCl_2$), for stiction-free polysilicon surfaces are reported. The main strategy is to replace the conventional monoalkyltrichlorosilane(MTS, $RSiCl_3$) such as octadecyltrichlorosilane (ODTS) or 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) with dialkyldichlorosilane (DDS, $R_2SiCl_2$) with twit short chains, especially DDMS. DDMS, with shorter chains in aprotic media, rapidly deposits on the chemically oxidized polysilicon surface at room temperature and successfully prevents long cantilevers of 3 mm in length from in-use as well as release stiction. DDMS-modified polysilicon surfaces exhibit satisfactory hydrophobicity, long term stability and thermal stability, which are comparable to those of FDTS. DDMS as an alternative to FDTS and ODTS provides a few valuable advantages; ease in handling and long-term storage in solution, low temperature-dependence and low cost. In addition to the new modifier molecule, the simplified process of direct release right after washing the modified surface with isooctane was proposed to cut the processing time.

Comparison of the I-V Characteristic as Various Composition ratio of Iodine in a-Se of $BrO_2/a-Se$ based Radiation Conversion Sensor ($BrO_2/a-Se$ 구조의 방사선 변환센서에서 a-Se에 첨가된 조성비 변화에 따른 I-V 특성 비교)

  • Choi, Jang-Yong;Park, Ji-Koon;Gong, Hyun-Gi;Ahn, Sang-Ho;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.440-443
    • /
    • 2002
  • Present1y the X-Ray diagnosis system is a real condition that is changing by digital ways in it's existent analog ways. This digital radiation detector is divided by the direct method and the indirect method. The indirect method of applied voltage has special qualities that the resolution is low than direct method by diffusion effect that happens. The conversion process ( radiation${\rightarrow}$visible ray${\rightarrow}$electrical signal of two times, has shortcomings that the energy conversion efficiency of electrical signal is low. The direct method has shortcomings that need strong electric fie1d to detect electrical signal efficiently. This research achieved to develop digital detector of the Hybrid method that have form that mixes two ways to supplement shortcoming of direct. indirect method. A studied electrical characteristic by Iodine's Mixture ratio change is added to selenium in the detector which has a multi-layer structure (Oxybromide + a-Se). There are 8 kinds of Manufactured compositions to amorphous selenium Iodine each 30ppm, 100ppm, 200 ppm, 300ppm, 400ppm, 500ppm, 600ppm, 700ppm by a doped photoconductor through a vacuum thermal evaporation method. The phosphor layer is consisted of Oxybromide ($BrO_2$) which uses optical adhesives multi-layer structure. The manufactured compositions calculates and compares Net Charge and signal to noise ratio measuring Photocurrent about Darkcurrent and X-ray. When doped Iodine Mixture ratio is 500ppm to the multi-layer structure (Oxybromide + a-Se), applied voltage of $3V/{\mu}m$, leakage current of compositions $2.61nA/cm^2$ and net charge value by 764pC/$cm^2$/mR then the best result appeared.

  • PDF