• Title/Summary/Keyword: thermal scheme

Search Result 376, Processing Time 0.027 seconds

Development of photothermal mirage technique for measuring thermal diffusivity (열확산도 측정을 위한 광열 신기루 기법 개발)

  • Kim, Dong-Sik;Choi, Sun-Rock;Lee, Joo-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1395-1400
    • /
    • 2003
  • This paper introduces a novel scheme for determining the thermal diffusivity of solids using the photothermal mirage technique. The suggested scheme extends the thermal-wave coupling method, employing the solution to the heat conduction equation in close proximity to the pump beam. Therefore, determination of thermal diffusivity is possible by detecting the mirage signal with small separation between the probe and pump beams, with enhanced intensity of the mirage signal. Though the method requires information about the probe-beam height, the absolute transverse position of the probe beam need not be known as it is automatically evaluated by the iterative-computation procedure. The thermal diffusivity of Ni is measured by the proposed scheme and the result demonstrates good agreement with the literature value to within 5 %.

  • PDF

Evaluation of Convection Schemes for Thermal Hydraulic Analysis in a Liquid Metal Reactor (액체금속로 내부 열유동해석을 위한 대류항처리법 평가)

  • Choi Seok-Ki;Kim Seong-O;Kim Eui-Kwang;Eoh Jae-Hyuk;Choi Hoon-Ki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.64-69
    • /
    • 2002
  • A numerical study has been peformed for evaluation of convection schemes for thermal hydraulic analysis in a liquid metal reactor Four convection schemes, HYBRID, QUICK, SMART and HLPA included in the CFX-4 code are considered. The performances of convection schemes are evaluated by applying them to the five test problems. The accuracy, stability and convergence are tested. It is shown that the HYBRID scheme is too diffusive, and the QUICK scheme exhibits overshoots and undershoots, and the SMART scheme shows convergence oscillations, and the HLPA scheme preserves the boundedness without causing convergence oscillations. The accuracies of SMART, QUICK and HLPA schemes are comparable. Thus, the use of HLPA scheme is highly recommended for thermal hydraulic analysis in a liquid metal reactor.

  • PDF

A Multigroup Diffusion Nodal Scheme : Hybrid of AFEN and PEN Methods

  • Cho, Nam-Zin;Noh, Jae-Man
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.29-34
    • /
    • 1995
  • The good features of the analytic function expansion nodal (AFEN) method are utilized to develop a practical scheme jot the multigroup diffusion problems, in combination with the polynomial expansion nodal (PEN) method. The thermal group fluxes exhibiting strong gradients are solved by the AFEN method[1-6], while the fast group fluxes that are smoother than the thermal group fuzes are solved by the PEN method[7-9]. The scheme is applied to a MOX-fuel loaded core with good results.

  • PDF

Numerical Model for Thermal Hydraulic Analysis in Cable-in-Conduit-Conductors

  • Wang, Qiuliang;Kim, Kee-Man;Yoon, Cheon-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.985-996
    • /
    • 2000
  • The issue of quench is related to safety operation of large-scale superconducting magnet system fabricated by cable-in-conduit conductor. A numerical method is presented to simulate the thermal hydraulic quench characteristics in the superconducting Tokamak magnet system, One-dimensional fluid dynamic equations for supercritical helium and the equation of heat conduction for the conduit are used to describe the thermal hydraulic characteristics in the cable-in-conduit conductor. The high heat transfer approximation between supercritical helium and superconducting strands is taken into account due to strong heating induced flow of supercritical helium. The fully implicit time integration of upwind scheme for finite volume method is utilized to discretize the equations on the staggered mesh. The scheme of a new adaptive mesh is proposed for the moving boundary problem and the time term is discretized by the-implicit scheme. It remarkably reduces the CPU time by local linearization of coefficient and the compressible storage of the large sparse matrix of discretized equations. The discretized equations are solved by the IMSL. The numerical implement is discussed in detail. The validation of this method is demonstrated by comparison of the numerical results with those of the SARUMAN and the QUENCHER and experimental measurements.

  • PDF

Development of Heliostat Aiming Point Allocation Scheme in Heliostat Field Control Algorithm for 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템을 위한 헬리오스타트 필드 운영 알고리즘의 헬리오스타트 반사목표점 할당 방안 개발)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.21-29
    • /
    • 2014
  • Heliostat field control algorithm is the logics to operate the heliostat field of tower type solar thermal power plant and it could include various methodologies of how to control the heliostat field so as to optimize the energy collection efficiency as well as to reduce the system operating cost. This work, as the first part of the consecutive works, presents heliostat aiming mint allocation scheme which will be used in the heliostat field control algorithm for 200kW solar thermal power plant built in Daegu, Korea. We first discuss the structure of heliostat field control system required for the implementation of aiming scheme developed in this work. Then the methodologies to allocate the heliostat aiming points on the receiver are discussed. The simulated results show that the heliostat aiming point allocation scheme proposed in this work reduces the magnitude of peak heat flux on the receiver more than 40% from the case of which all the heliostats in the field aim at the center of receiver simultaneously. Also it shows that, when the proposed scheme is used, the degradation of heliostat field optical efficiency is relatively small from the maximal optical efficiency the heliostat field could have.

Development of Photothermal Mirage Technique for Measuring Thermal Diffusivity (열확산도 측정을 위한 광열 신기루 기법 개발)

  • Choi, Sun-Rock;Lee, Joo-Chul;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1220-1228
    • /
    • 2003
  • The mirage technique is proved to be powerful in measuring the thermal diffusivity of materials. In particular, its contactless nature makes it suitable for delicate samples and microscale structures. In this study, thermal-wave-coupling method is developed in a general form for both thermally thin and thick samples. In the suggested measuring scheme, the probe beam can be positioned close to the pump beam and the absolute position need not be measured. Therefore the new scheme provides a relatively simple yet effective way to determine the thermal diffusivity of thermally thick samples. Thermal diffusivities of bulk samples like Ni and Al were measured and the characteristics of mirage signal for a thin film were observed by using the mirage experimental setup. The apparent thermal diffusivity was measured by varying such parameters as probe beam height, size of pump beam, power of pump beam, and surface condition of sample. From the practical standpoint, it is shown that the size of the pump beam is the most important factor for accurate thermaldiffusivity measurement. Experiments using thin-film samples show that the thermal diffusivity of a substrate covered with thin film can be measured by photothermal mirage signals.

Development of a Material Mixing Method for Topology Optimization of PCB Substrate (PCB판의 위상 최적화를 위한 재료혼합법의 개발)

  • Han, Seog-Young;Kim, Min-Sue;Hwang, Joon-Sung;Choi, Sang-Hyuk;Park, Jae-Yong;Lee, Byung-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • A material mixing method to obtain an optimal topology for a structure in a thermal environment was suggested. This method is based on Evolutionary Structural Optimization(ESO). The proposed material mixing method extends the ESO method to a mixing several materials for a structure in the multicriteria optimization of thermal flux and thermal stress. To do this, the multiobjective optimization technique was implemented. The overall efficiency of material usage was measured in terms of the combination of thermal stress levels and heat flux densities by using a combination strategy with weighting factors. Also, a smoothing scheme was implemented to suppress the checkerboard pattern in the procedure of topology optimization. It is concluded that ESO method with a smoothing scheme is effectively applied to topology optimization. Optimal topologies having multiple thermal criteria for a printed circuit board(PCB) substrate were presented to illustrate validity of the suggested material mixing method. It was found that the suggested method works very well for the multicriteria topology optimization.

IMPLEMENTATION OF A SECOND-ORDER INTERPOLATION SCHEME FOR THE CONVECTIVE TERMS OF A SEMI-IMPLICIT TWO-PHASE FLOW ANALYSIS SOLVER (물-기체 2상 유동 해석을 위한 Semi-Implicit 방법의 대류항에 대한 2차 정확도 확장)

  • Cho, H.K.;Lee, H.D.;Park, I.K.;Jeong, J.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.13-22
    • /
    • 2009
  • A two-phase (gas and liquid) flow analysis solver, named CUPID, has been developed for a realistic simulation of transient two-phase flows in light water nuclear reactor components. In the CUPID solver, a two-fluid three-field model is adopted and the governing equations are solved on unstructured grids for flow analyses in complicated geometries. For the numerical solution scheme, the semi-implicit method of the RELAP5 code, which has been proved to be very stable and accurate for most practical applications of nuclear thermal hydraulics, was used with some modifications for an application to unstructured non-staggered grids. This paper is concerned with the effects of interpolation schemes on the simulation of two-phase flows. In order to stabilize a numerical solution and assure a high numerical accuracy, the second-order upwind scheme is implemented into the CUPID code in the present paper. Some numerical tests have been performed with the implemented scheme and the comparison results between the second-order and first-order upwind schemes are introduced in the present paper. The comparison results among the two interpolation schemes and either the exact solutions or the mesh convergence studies showed the reduced numerical diffusion with the second-order scheme.

Evaluation of the Coefficient of Thermal Expansion of Constituents in Composite Materials using an Inverse Analysis Scheme (역해석기법을 이용한 복합재료 구성성분의 열팽창계수 예측)

  • Lim, Jae Hyuk;Sohn, Dongwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.393-401
    • /
    • 2014
  • In this paper, we propose an evaluation scheme of the coefficients of thermal expansion (CTE) of constituents in composite materials using an inverse analysis. The size of constituents typically is about a few micrometers, which makes the identification of material properties difficult as well as the measurement results inaccurate. The proposed inverse analysis scheme, which is combined with the Mori-Tanaka method for predicting an equivalent CTE of composite materials, provides the CTE of the constituents in a straightforward manner by minimizing the cost function defined in lamina scale with the steepest descent method. To demonstrate the effectiveness and accuracy of the proposed scheme, the CTEs of several fibers (glass fiber, P75, P100, and M55J) embedded in matrix are evaluated and compared with experimental results. Furthermore, we discuss the effects of uncertainty of laminar and matrix properties on the prediction of fiber properties.

Thermal-Hydraulic Analysis Methodology of Nuclear Power Plant Steam Generator (원전 증기발생기 열유동 해석법)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.43-52
    • /
    • 2002
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of steam generators in nuclear power plant. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented