DOI QR코드

DOI QR Code

Evaluation of the Coefficient of Thermal Expansion of Constituents in Composite Materials using an Inverse Analysis Scheme

역해석기법을 이용한 복합재료 구성성분의 열팽창계수 예측

  • Lim, Jae Hyuk (Satellite Structure Department, Korea Aerospace Research Institute) ;
  • Sohn, Dongwoo (Division of Mechanical and Energy Systems Engineering, College of Engineering, Korea Maritime and Ocean University)
  • 임재혁 (한국항공우주연구원 위성구조팀) ;
  • 손동우 (한국해양대학교 기계.에너지시스템공학부)
  • Received : 2014.05.13
  • Accepted : 2014.05.27
  • Published : 2014.10.31

Abstract

In this paper, we propose an evaluation scheme of the coefficients of thermal expansion (CTE) of constituents in composite materials using an inverse analysis. The size of constituents typically is about a few micrometers, which makes the identification of material properties difficult as well as the measurement results inaccurate. The proposed inverse analysis scheme, which is combined with the Mori-Tanaka method for predicting an equivalent CTE of composite materials, provides the CTE of the constituents in a straightforward manner by minimizing the cost function defined in lamina scale with the steepest descent method. To demonstrate the effectiveness and accuracy of the proposed scheme, the CTEs of several fibers (glass fiber, P75, P100, and M55J) embedded in matrix are evaluated and compared with experimental results. Furthermore, we discuss the effects of uncertainty of laminar and matrix properties on the prediction of fiber properties.

복합재료 구성성분은 수 마이크로미터 수준의 크기를 가지고 있으므로 시험을 통한 정확한 물성 측정이 매우 어렵다. 그러므로 본 논문에서는 역해석을 이용하여 복합재료 구성성분의 열팽창계수를 예측할 수 있는 기법을 제안한다. 복합재료에 대한 등가 열팽창계수를 예측할 수 있는 Mori-Tanaka 기법과 결합된 역해석기법을 이용하면, 라미나 수준의 목적함수를 최소화함으로써 구성성분의 열팽창계수를 효율적으로 구할 수 있다. 본 연구에서 제안한 기법을 검증하기 위하여 다양한 섬유(glass fiber, P75, P100, M55J)에 대한 열팽창계수를 예측하고 이를 시험결과와 비교하였다. 또한 라미나와 기지 물성치에 대한 불확실성이 섬유 물성치 예측에 미치는 영향을 분석하였다.

Keywords

References

  1. Benedikt, B., Kumosa, M., Predecki, P. (2005) An Evaluation of Residual Stresses in Graphite/PMR-15 Composites by X-ray Diffraction, Acta Mater., 53, pp.4531-4543. https://doi.org/10.1016/j.actamat.2005.06.008
  2. Benedikt, B., Rupnowski, P., Kumosa, M. (2003) Visco-elastic Stress Distributions and Elastic Properties in Unidirectional Composites with Large Volume Fractions of Fibers. Acta Mater., 51, pp.3483-3493. https://doi.org/10.1016/S1359-6454(03)00168-X
  3. Daniel, I.M., Ishai, O. (2006) Engineering Mechanics of Composite Materials, Second edition, Oxford university press, New York, USA.
  4. Hexcel Corporation http://www.hexcel.com (accessed 2014)
  5. Islam, MD.R. Sjolind, S.G., Pramila, A. (2001) Finite Element Analysis of Linear Thermal Expansion Coefficients of Unidirectional Cracked Composites, J. Compo. Mater., 35, pp.1762-1776. https://doi.org/10.1106/K34C-6V0U-JC1V-B1ET
  6. Karadeniz, Z.H., Kumlutas, D. (2007) A Numerical Study on the Coefficients of Thermal Expansion of Fiber Reinforced Composite Materials, Compos. Struct., 78, pp.1-10. https://doi.org/10.1016/j.compstruct.2005.11.034
  7. Kulkarni, R., Ochoa, O. (2006) Transverse and Longitudinal CTE Measurements of Carbon Fibers and their Impact on Interfacial Residual Stresses in Composites, J. Compo. Mater., 40, pp.733-754. https://doi.org/10.1177/0021998305055545
  8. Lee, D.-H. (2010) Precise Measurement of Thermal Expansion of Composite Materials for Space Applications, Master's Thesis, KAIST, Daejeon, Korea.
  9. Miyagawa, H., Mase, T., Sato, C., Drown, E., Drzal, L.T., et al. (2006) Comparison of Experimental and Theoretical Transverse Elastic Modulus of Carbon Fibers, Carbon, 44, pp.2002-2008. https://doi.org/10.1016/j.carbon.2006.01.026
  10. Romeo, G., Frulla, G. (1995) Analytical and Experimental Results of the Coefficient of Thermal Expansion of High-Modulus Graphite-Epoxy Materials, J. Compo. Mater., 29, pp.751-765. https://doi.org/10.1177/002199839502900604
  11. Rupnowski, P., Gentz, M., Sutter, J.K., Kumosa, M. (2005) An Evaluation of the Elastic Properties and Thermal Expansion Coefficients of Medium and High Modulus Graphite Fibers, Compos. Part A, 36, pp.327-338. https://doi.org/10.1016/j.compositesa.2004.07.003
  12. Schapery, R.A. (1968) Thermal Expansion Coefficients of Composite Materials based on Energy Principles, J. Compo. Mater., 2, pp.380-404. https://doi.org/10.1177/002199836800200308
  13. Shin, H., Yang, S., Yu, S., Chang, S., Cho, M. (2012) A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance, J. Comput. Struct. Eng. Inst. Korea, 25, pp.315-322. https://doi.org/10.7734/COSEIK.2012.25.4.315
  14. Strife, J.R., Prewo, K.M. (1979) The Thermal Expansion Behavior of Undirectional and Bidirectional Kevlar/Epoxy Composites, J. Compo. Mater., 13, pp.264-277. https://doi.org/10.1177/002199837901300401
  15. TenCate http://www.tencate.com (accessed 2014)
  16. Toray Industries, Inc. http://www.torayca.com/en/index.html (accessed 2014)
  17. Yang, S., Yu, S., Ryu, J., Cho, M. (2013) A Study on the Prediction of Elastoplastic Behavior of Carbon Nanotube/Polymer Composites, J. Comput. Struct. Eng. Inst. Korea, 26, pp.423-430. https://doi.org/10.7734/COSEIK.2013.26.6.423
  18. Yu, W., Tang, T. (2007) A Variational Asymptotic Micromechanics Model for Predicting Thermoelastic Properties of Heterogeneous Material, Int. J. Solid & Struct., 44, pp.7510-7525. https://doi.org/10.1016/j.ijsolstr.2007.04.026