• Title/Summary/Keyword: thermal properties and mechanical properties

Search Result 2,737, Processing Time 0.031 seconds

Modification of Water-borne Polyurethane Using Benzophenone Crosslinker (Benzophenone 가교제를 이용한 수분산 폴리우레탄 개질)

  • Kim, HyeokJin;Kim, Jin Chul;Chang, SangMok;Seo, BongKuk
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.221-226
    • /
    • 2016
  • Production of eco-friendly and biologically harmless materials is strongly required in all industries. In particular, reducing volatile organic compounds in coating processes is extremely important to secure worker's safety. During recent two decades, extensive research works on water-borne polyurethane dispersion (PUD) have been continuously developed as an alternative to solvent-borne polyurethane. However, PUD was shown inferior mechanical properties to the organic solvent-borne polyurethane due to a limit to the molecular weight increase, which resulted in the limit of applications. To overcome this drawback, several approaches have been examined such as polymer blends and thermal/radiation induced crosslinking. Among these methods, the radiation curing system was suitable for industrialization because of the high crosslinking density and fast curing speed. In this study, we overcame the drawback for PUD via introducing benzophenone radiation curable units to PUD. We synthesized PUD films which possessed good dispersion in water for 30 days, increased Tg and Td more than $5^{\circ}C$ after UV curing film as well as improved young's modulus more than double.

Effect of organoclay on the dynamic properties of SBR compound reinforced with carbon black and silica (유기화 클레이의 첨가가 실리카 및 카본블랙를 함유한 SBR 복합체의 동적 특성에 미치는 영향)

  • Son, M.J.;Kim, W.
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.260-267
    • /
    • 2006
  • SBR (styrene-butadiene rubber; 25 wt% of solid contents) nanocomposites reinforced with OLS(organically modified layered silicates) were manufactured via the latex method. Two types of OLS are prepared, i.e. dodecylamine (primary amine) modified montmorillonite (DA-MMT) and N, N-dimethyldodecylamine (tertiary amino) modified MMT (DDA-MMT). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to characterize the layer distance of OLS and the morphology of the nanocomposites. SBR nanocomposites reinforced with ternary phase filler (carbon black/silica/OLS) systems also manufactured. Dynamic mechanical thermal analysis (DMTA) was performed on these composites to determine the loss factor (tan $\delta$) over a range of temperature($-20^{\circ}C{\sim}80^{\circ}C$). The results showed that there was significant changes on the values or tan $\delta$ with the addition of small amount of the OLS. By increasing the contents of OLS, the values of tan $\delta$ at $0^{\circ}C$ increased but those of tan $\delta$ at $60^{\circ}C$ decreased with increasing OLS contents.

Spectroscopical Analysis of SiO2 Optical Film Fabricated by FHD(Flame Hydrolysis Deposition) (FHD(Flame Hydrolysis Deposition)공정으로 제작된 SiO2 광도파막의 분광학적 분석)

  • Kim, Yun-Je;Shin, Dong-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.896-901
    • /
    • 2002
  • Since many process parameters of FHD(Flame Hydrolysis Deposition) are involved in forming multi-component amorphous silica film ($SiO_2-B_2O_3-P_2O_5-GeO_2$), it has not been easy to predict the optical, mechanical and thermal properties of deposited film from the simple process parameters, such as source flow rate. Furthermore, the prediction of final composition of film becomes even more difficult after sintering at high temperature due to the evaporation of volatile dopants. The motivation of the study was to clarify the quantitative relationship between simple process parameters such as the flow rate of source gases and resulting chemical composition of sintered film. Hence, the compositional analysis of silica soot by FTIR(Fourier Transformation Infrared Spectroscopy) and ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) under the control of the amount of dopant was carried out to obtain the quantitative composition. By measuring spectrum of absorbance from FTIR, the compositional change of B-O, Si-O, OH($H_2O$) in silica film was measured. The concentrations of these dopants were also measured by ICP-AES, which were compared with the FTIR result. The final quantitative relationship between simple process parameters and composition was deduced from the comparison between two results.

Enhanced Mechanical Properties and Thermal Stability of CrAlN Coatings by Interlayer Deposition (중간층 증착에 의한 CrAlN 코팅의 기계적 물성 및 내열성 향상에 관한 연구)

  • Kim, Hoe-Geun;Ra, Jeong-Hyeon;Song, Myeon-Gyu;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.100-100
    • /
    • 2016
  • 물리기상증착방법 (Physical vapor deposition)에 의하여 합성된 천이금속 질화물 박막은 경도, 내마모성 등 절삭공구의 성능을 향상시키며, Ti-Al-N, Ti-Zr-N, Zr-Al-N, Cr-Si-N 등의 3원계 경질 박막에 대한 연구가 지속적으로 이루어지고 있다. 이중에서도 CrAlN 코팅은 높은 경도, 낮은 표면 조도 등의 우수한 기계적 특성 이외에 고온에서 안정한 합금상 형성으로 인하여 우수한 내열성을 보유하여 공구 코팅으로의 적용 가능성이 크다. 그러나 최근 공구사용 환경의 가혹화로 인하여 코팅의 내마모성 및 내열성 등의 물성 향상을 통한 공구의 수명 향상이 필요시 되고 있으며, 코팅에 적합한 중간층을 합성함으로써 공구 코팅으로의 적용 가능성을 높이는 연구들이 진행되고 있다. 본 연구에서는 CrAlN 코팅의 물성을 향상시키기 위해 CrAlN 코팅과 WC-Co 6wt.% 모재 사이에 CrN, CrZrN, CrN/CrZrSiN 등의 다양한 중간층을 합성하였으며, 중간층을 포함한 모든 코팅의 두께는 $3{\mu}m$ 로 제어하였다. 합성된 코팅의 미세조직, 경도 및 탄성계수, 내모성을 분석하기 위해 field emission scanning electron microscopy(FE-SEM), nano-indentation, ball-on-disk 마모시험기 및 ${\alpha}-step$을 사용하였다. 코팅의 내열성을 확인하기 위해 코팅을 furnace에 넣어 공기중에서 500, 600, 700, 800, 900, $1,000^{\circ}C$로 30분 동안 annealing 한 후에 nano-indentation을 사용하여 경도를 측정하였다. CrAlN 코팅을 나노 인덴테이션으로 분석한 결과, 모든 코팅의 경도(35.5-36.2 GPa)와 탄성계수(424.3-429.2 GPa)는 중간층의 종류에 상관없이 비슷한 값을 보인 것으로 확인됐다. 그러나, 코팅의 마찰계수는 중간층의 종류에 따라 다른 값을 보였으며, CrN/CrZrSiN 중간층을 증착한 CrAlN 코팅의 마찰계수는 0.34로 CrZrN 중간층을 증착한 CrAlN 코팅의 마찰계수(0.41)에 비해 낮은 값을 보였다. 또한, 코팅의 마모율 및 마모폭도 비슷한 경향을 보인 것으로 보아, CrN/CrZrSiN 중간층을 합성한 CrAlN 코팅의 내마모성이 상대적으로 우수한 것으로 판단된다. 이것은 중간층의 H/E ratio가 코팅의 내마모성에 미치는 영향에 의한 결과로 사료된다. H/E ratio는 파단시의 최대 탄성 변형율로써, 모재/중간층/코팅의 H/E ratio 구배에 따라 코팅 내의 응력의 완화 정도가 변하게 된다. WC 모재 (H/E=0.040)와 CrAlN 코팅(H/E=0.089) 사이에서 CrN, CrZrSiN 중간층의 H/E ratio 는 각각 0.076, 0.083 으로 모재/중간층/코팅의 H/E ratio 구배가 점차 증가함을 확인 할 수 있었고, 일정 응력이 지속적으로 가해지면서 진행되는 마모시험중에 CrN과 CrZrSiN 중간층이 WC와 CrAlN 코팅 사이에서 코팅 내부의 응력구배를 완화시키는 역할을 함으로써 CrAlN 코팅의 내마모성이 향상된 것으로 판단된다. 모든 코팅을 열처리 후 경도 분석결과, CrN/CrZrSiN 중간층을 증착한 CrAlN 코팅은 $1,000^{\circ}C$까지 약 28GPa의 높은 경도를 유지한 것으로 확인 되었고, 이는 CrZrSiN 중간층 내에 존재하는 $SiN_x$ 비정질상의 우수한 내산화성에 의한 결과로 판단된다.

  • PDF

Studies on Garlic Mosaic Virus -lts isolation, symptom expression in test plants, physical properties, purification, serology and electron microscopy- (마늘 모자이크 바이러스에 관한 연구 -마늘 모자이크 바이러스의 분리, 검정식물상의 반응, 물리적성질, 순화, 혈청반응 및 전자현미경적관찰-)

  • La Yong-Joon
    • Korean journal of applied entomology
    • /
    • v.12 no.3
    • /
    • pp.93-107
    • /
    • 1973
  • Garlic (Allium sativum L.) is an important vegetable crop for the Korean people and has long been cultivated extensively in Korea. More recently it has gained importance as a source of certain pharmaceuticals. This additional use has also contributed to the increasing demand for Korean garlic. Garlic has been propagated vegetatively for a long time without control measures against virus diseases. As a result it is presumed that most of the garlic varieties in Korea may have degenerated. The production of virus-free plants offers the most feasible way to control the virus diseases of garlic. However, little is known about garlic viruses both domestically and in foreign countries. More basic information regarding garlic viruses is needed before a sound approach to the control of these diseases can be developed. Currently garlic mosaic disease is most prevalent in plantings throughout Korea and is considered to be the most important disease of garlic in Korea. Because of this importance, studies were initiated to isolate and characterize the garlic mosaic virus. Symptom expression in test plants, physical properties, purification, serological reaction and morphological characteristics of the garlic mosaic virus were determined. Results of these studies are summarized as follows. 1. Surveys made throughout the important garlic growing areas in Korea during 1970-1972 revealed that most of the garlic plants were heavily infected with mosaic disease. 2. A strain of garlic mosaic virus was obtained from infected garlic leaves and transmitted mechanically to Chenopodium amaranticolor by single lesion isolation technique. 3. The symptom expression of this garlic mosaic virus isolate was examined on 26 species of test plants. Among these, Chenopodium amaranticolor, C. quince, C. album and C. koreanse expressed chlorotic local lesions on inoculated leaves 11-12 days after mechanical inoculation with infective sap. The remaining 22 species showed no symptoms and no virus was recovered from them whet back-inoculated to C. amaranticolor. 4. Among the four species of Chtnopodium mentioned above, C. amaranticolor and C. quinoa appear to be the most suitable local lesion test plants for garlic mosaic virus. 5. Cloves and top·sets originating from mosaic infected garlic plants were $100\%$ infected with the same virus. Consequently the garlic mosaic virus is successively transmitted through infected cloves and top-sets. 6. Garlic mosaic virus was mechanically transmitted to C, amaranticolor when inoculations were made with infective sap of cloves and top-sets. 7. Physical properties of the garlic mosaic virus as determined by inoculation onto C. amaranticolor were as follows. Thermal inactivation point: $65-70^{\circ}C$, Dilution end poiut: $10^-2-10^-3$, Aging in vitro: 2 days. 8. Electron microscopic examination of the garlic mosaic virus revealed long rod shaped particles measuring 1200-1250mu. 9. Garlic mosaic virus was purified from leaf materials of C. amaranticolor by using two cycles of differential centrifugation followed by Sephadex gel filtration. 10. Garlic mosaic virus was successfully detected from infected garlic cloves and top-sets by a serological microprecipitin test. 11 Serological tests of 150 garlic cloves and 30 top-sets collected randomly from seperated plants throughout five different garlic growing regions in Korea revealed $100\%$ infection with garlic mosaic virus. Accordingly it is concluded that most of the garlic cloves and top-sets now being used for propagation in Korea are carriers of the garlic mosaic virus. 12. Serological studies revealed that the garlic mosaic virus is not related with potato viruses X, Y, S and M. 13. Because of the difficulty in securing mosaic virus-free garlic plants, direct inoculation with isolated virus to the garlic plants was not accomplished. Results of the present study, however, indicate that the virus isolate used here is the causal virus of the garlic mosaic disease in Korea.

  • PDF

Fabrication and Characterization of Transparent Conductive Film based on Bacterial Cellulose (Bacterial cellulose를 기반으로 하는 투명전도성막의 제조 및 특성평가)

  • Yim, Eun-Chae;Kim, Seong-Jun;Kee, Chang-Doo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.766-773
    • /
    • 2013
  • A transparent film was fabricated based on bacterial cellulose (BC), BC has excellent physical strength and stability at high temperature and it is an environmental friendly flexible material. In order to improve the conductivity, silver nanowire (AgNW) and/or graphene were introduced to the BC membrane. The aspect ratio of the AgNW synthesized in this study was 214, with a length of $15{\mu}m$ and width of 70 nm. The higher aspect ratio improved the conductivity by reducing the contact resistance. The thermal and electrical properties of 7 types of films prepared were investigated. Each film was fabricated with rectangular shape ($2mm{\times}2mm{\times}50{\mu}m$). The films were scored with a net shape by a knife, and filled with AgNW and graphene to bestow conductivity. The film filled with AgNW showed favorable electrical characteristics with a thickness of $350{\mu}m$, electron concentration of $1.53{\times}10^{19}$, electron mobility of $6.63{\times}10^5$, and resistivity of 0.28. The film filled with graphene had a thickness of $360{\mu}m$, electron concentration of $7.74{\times}10^{17}$, electron mobility of 0.17, and resistivity of 4.78. The transmittances at 550 nm were 98.1% and 80.9%, respectively. All the films were able to light LEDs bulbs although their brightness differed. A thermal stability test of the BC and PET films at $150{\pm}5^{\circ}C$ showed that the BC film was more stable, whereas the PET film was quickly banded. From these results, it was confirmed that there it is possible to fabricate new transparent conductivity films based on BC.

Study on Basic Requirements of Geoscientific Area for the Deep Geological Repository of Spent Nuclear Fuel in Korea (사용후핵연료 심지층처분장부지 지질환경 기본요건 검토)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Park, Ju-Wan;Park, Jin-Baek;Song, Jong-Soon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.63-75
    • /
    • 2012
  • This paper gives some basic requirements and preferences of various geological environmental conditions for the final deep geological repository of spent nuclear fuel (SNF). This study also indicates how the requirements and preferences are to be considered prior to the selection of sites for a site investigation as well as the final disposal in Korea. The results of the study are based on the knowledge and experience from the IAEA and NEA/OECD as well as the advanced countries in SNF disposal project. This study discusses and suggests preliminary guideline of the disposal requirements including geological, mechanical, thermal, hydrogeological, chemical and transport properties of host rock with long term geological stabilities which influence the functions of a multi-barrier disposal system. To apply and determine whether requirements and preferences for a given parameter are satisfied at different stages during a site selection and suitability assessment of a final disposal site, the quantitative criteria in each area should be formulated with credibility through relevant research and development efforts for the deep geological environment during the site screening and selection processes as well as specific studies such as productions of safety cases and validation studies using a generic underground research laboratory (URL) in Korea.