• Title/Summary/Keyword: thermal processes

Search Result 1,091, Processing Time 0.028 seconds

Thermal Stress Analysis of Brake Drum by Using Finite Element Analysis (유한요소법을 이용한 브레이크 드럼의 열응력 해석)

  • 박영철;박동성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.77-84
    • /
    • 2000
  • Nonlinear transient analysis is executed to obtain the temperature distribution, and to evaluate the thermal stress of brake drum by using FEA(finite element analysis). The result induces the reason why hair crack and the cause of drum failure occurs and the way how stress of drum decreases. The temperature of drum is in proportion to the drum thickness and it processes nonlinear changes at every points of drum. The higher bulk temperature raises, the more stress difference between inner surface and outer surface makes and the highest bulk temperature is at the corner section. It is necessary for the diminishment of the drum stress to make air flow, between drum and rim, move lively and use the materials of higher conductivity. The hair crack and the cause of drum failure seem to be started at the near corner section.

  • PDF

Field Enhanced Rapid Thermal Process for Low Temperature Poly-Si TFTs Fabrications

  • Kim, Hyoung-June;Shin, Dong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.665-667
    • /
    • 2005
  • VIATRON TECHNOLOGIES has developed FE-RTP system that enables LTPS LCD and AMOLED manufacturers to produce poly-Si films at low cost, high throughput, and high yield. The system employs sequential heat treatment methods using temperature control and rapid thermal processor modules. The temperature control modules provide exceptionally uniform heating and cooling of the glass substrates to within ${\pm}2^a\;C$. The rapid thermal process that combines heating with field induction accelerates the treatment rates. The new FE-RTP system can process $730{\times}920mm$ glass substrates as thin as 0.4 mm. The uniform nature of poly-Si films produced by FE-RTP resulted in AMOLED panels with no laser-Muras. Furthermore, FE-RTP system also showed superior performances in other heat treatment processes involved in poly-Si TFT fabrications, such as dopant activation, gate oxide densification, hydrogenation, and pre-compaction.

  • PDF

A Thermal hydraulic Investigation on ADSR Liquid Lead Target

  • Kim, Ju Y.;Byung G. Huh;Chang H, Chung;Tae Y. song;Park, Won S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.666-671
    • /
    • 1998
  • Computational fluid dynamics(CFD) code FLUENT[11 was used to simulate the thermal hydraulic processes occuring in conceptual design of the accelerator-driven subcritical reactor(ADSR) liquid lead target. The purpose of the analysis is to investigate the thermal hydraulic characteristics of liquid lead as ADSR target material with various target geometries and injection locations of proton beam. In the calculation analysis, the local temperature of the liquid lead target rises to the boiling temperature very rapidly When the proton beam is injected from the bottom of the target system, the duration time to reach the boiling temperature is longer and the temperature distribution is flatter than other cases.

  • PDF

ENVIRONMENTAL TEST OF THE EQM PAYLOAD SYSTEM FOR THE COMMUNICATIONS AND BROADCASTING SATELLITE

  • Choi Jang Sup;Park Jong Heung;Eun Jong Won;Lee Seong Pal
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.368-371
    • /
    • 2004
  • ETRI has developed the EQM (Engineering Qualification model) payload system for the communications and broadcasting satellite (CBS) with Korean local companies. This paper describes a series of environmental tests such as vibration, thermal/thermal vacuum, and EMC tests. All the development processes including the design, implementation, integration and workmanship were verified and evaluated by these tests. The results of the functional tests and the compliance to the requirements are also presented. The technologies and heritage obtained from this development will be applied to the development of the payload system for the Korean communication satellite in the near future.

  • PDF

Analysis of Nano-Scale Heat Conduction in the Quantum Dot Superlattice by Ballistic Diffusive Approximation (Ballistic Diffusive Approximation에 의한 Quantum Dot Superlattice의 나노열전달 해석)

  • Kim, Won-Kap;Chung, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1376-1381
    • /
    • 2004
  • Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and optoelectronic devices based on quantum structures. $Chen^{(1)}$ developed ballistic diffusive equation(BDE) for alternatives of the Boltzmann equation that can be applied to the complex geometrical situation. In this study, a simulation code based on BDE is developed and applied to the 1-dimensional transient heat conduction across a thin film and transient 2-dimensional heat conduction across the film with heater. The obtained results are compared to the results of the $Chen^{(1)}$ and Yang and $Chen^{(1)}$. Finally, steady 2-dimensional heat conduction in the quantum dot superlattice are solved to obtain the equivalent thermal conductivity of the lattice and also compared with the experimental data from $Borca-Tasciuc^{(2)}$.

  • PDF

A Study on the Heat Transfer and Film Growth During the III-V MOCVD Processes (III-V 족 MOCVD 공정의 열전달 및 필름 성장에 대한 연구)

  • Im, Ik-Tae;Shimogaki, Yukihiro
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1213-1218
    • /
    • 2004
  • Film growth rate of InP and GaAs using TMI, TMG, TBA and TBP is numerically predicted and compared to the experimental results. Obtained results show that the film growth rate is very sensitive to the thermal condition in the reactor. To obtain exact thermal boundary conditions at the reactor walls, we analyzed the gas flow and heat transfer in the reactor including outer tube as well as the inner reactor parts using a full three-dimensional model. The results indicate that the exact thermal boundary conditions are important to get precise film growth rate prediction.

  • PDF

A Study on Heat Transfer and Film Growth Rate During the III-V MOCVD Processes

  • Ik Tae, Im;MASAKAZU, SUGIYAMA;VOSHIAKI, NAKANO;YUKIHIRO, SHIMOGAKI
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.192-199
    • /
    • 2003
  • Film growth of InP and GaAs using TMIn, TMGa, TBAs and TBP is numerically predicted and compared to the experimental results. To obtain exact thermal boundary conditions at the reactor walls, the gas flow and heat transfer are analyzed for full three-dimensional reactor including outer tube as well as the inner reactor parts. The results indicate that the exact thermal boundary conditions are important to get precise film growth rate prediction since film deposition is mainly controlled by the temperature dependent diffusion. The results also show that thermal diffusion plays an important role in the upstream region.

  • PDF

Solar power and desalination plant for copper industry: improvised techniques

  • Sankar, D.;Deepa, N.;Rajagopal, S.;Karthik, K.M.
    • Advances in Energy Research
    • /
    • v.3 no.1
    • /
    • pp.59-70
    • /
    • 2015
  • In India, continuous production of electricity and sweet/potable water from Solar power and desalination plant plays a major role in the industries. Particularly in Copper industry, Solar power adopts Solar field collector combined with thermal storage system and steam Boiler, Turbine & Generator (BTG) for electricity production and desalination plant adopts Reverse osmosis (RO) for sweet/potable water production which cannot be used for long hours of power generation and consistency of energy supply for industrial processes and power generation cannot be ensured. This paper presents an overview of enhanced technology for Solar power and Desalination plant for Copper industry making it continuous production of electricity and sweet/potable water. The conventional technology can be replaced with this proposed technique in the existing and upcoming industries.

Implementation of a Thermal Control System using RVEGA - Optimal Fuzzy Controller (RVEGA - 최적 퍼지 제어기를 이용한 온도 제어 시스템의 구현)

  • Kim, Jung-Soo;Jeong, Jong-Won;Song, Ho-Shin;Kim, Tae-Woo;;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2099-2101
    • /
    • 2001
  • In general, the thermal control system has nonlinearity and the time delay, futhermore, it is difficult to design the free size controller, because the external environmental disturbances, such as rapid temperature change. Many researchers in this field are preferring to adapt the fuzzy logic control methods. But it is noted that the actuator identification of M.F.'s used in FLC is very difficult. Therefore in this paper, an implementation technique of thermal control system using RVEGA based optimal fuzzy control was proposed. It's superiority and exaction in controller design processes hardware in implementation were proved through a series of simulations and experimentations.

  • PDF

Gate Workfunction Optimization of a 32 nm Metal Gate MOSFET for Low Power Applications (저전력 분야 응용을 위한 32nm 금속 게이트 전극 MOSFET 소자의 게이트 workfunction 의 최적화)

  • Oh, Yong-Ho;Kim, Young-Min
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1974-1976
    • /
    • 2005
  • The feasibility of a midgap metal gate is investigated for 32nm MOSFET low power applications. The midgap metal gate MOSFET is found to deliver a driving current as high as a bandedge gate one for the low power applications if a proper retrograde channel is used. An adequate design of the retrograde channel is essential to achieve the performance requirement given in ITRS roadmap. In addition, a process simulation is run using halo implants and thermal processes to evaluate the feasibility of the necessary retrograde profile in manufacturing environments. From the thermal budget point of view, the bandedge metal gate MOSFET is more vulnerable to the following thermal process than the midgap metal gate MOSFET since it requires a steeper retrograde doping profile. Based on the results, a guideline for the gate workfunction and the channel profile in the 32 nm MOSFET is proposed.

  • PDF