• Title/Summary/Keyword: thermal power

Search Result 4,970, Processing Time 0.031 seconds

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

Thermal Fatigue Behavior of Thermal Barrier Coatings by Air Plasma Spray (대기플라즈마 용사법으로 제조된 열차폐코팅의 열피로특성 평가)

  • Lee, Han-sang;Kim, Eui-hyun;Lee, Jung-hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.363-369
    • /
    • 2008
  • Effects of top coat morphology and thickness on thermal fatigue behavior of thermal barrier coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and $300{\mu}m$ respectively. The thickness of top coat was about $700{\mu}m$ in the perpendicular cracked specimen (PCS). Under thermal fatigue condition at $1,100^{\circ}C$, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and thermally grown oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

증기터빈의 오일 휩 현상 및 대책

  • Gu, Jae-Ryang
    • 열병합발전
    • /
    • s.37
    • /
    • pp.18-21
    • /
    • 2004
  • There are several bearing system at large steam-turbines in thermal power plant. The bearing system is one of the most important parts of rotating machinery. The steam turbine vibrations mainly depend on the bearing oil the shaft alignment condition. This paper describes on the steam turbine abnormal vibration due to the oil whip in terms of the shaft alignment in the thermal power plant.

  • PDF

Input Signal Selection Circuits Development of Electronic Cards for Thermal Degradation in Nuclear Power Plant (원전 열화 전자카드의 입력신호 선택회로 개발)

  • Kim, Jong-ho;Che, Gyu-shik
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.554-560
    • /
    • 2019
  • Excore Nuclear Flux Monitoring System in Nuclear Power Plant monitors continuous reactor power up to maximum 200%. The monitoring method, however, has to be different depending on the reactor power level. Because the logarithmic pulse signals must be counted and processed exactly due to large uncertainty if their levels are low, on the other hand, they must be processed through statistical methodolgies if theirs are high to get exact monitoring values, in point of thermal degradation view. Therefore, we developed thermal degradation input signal selection circuit to transfer low level reactor power monitoring circuit to high level reactor power circuit at rated value in this paper. We proved their validities through testing them using real data used in nuclear power plant and analyzed their results. And, These methods will be used to measure the neutron level of excore nuclear flux monitoring system in nuclear power plant.

Load Following Operation Improvement by Governor Control Logic Modification of Thermal Power Plant (System Frequency Drop Prevention) (기력발전소 터빈조속기 제어로직 개선에 의한 발전기 부하추종성 향상 (계통주파수저하방지))

  • Lee, Jong-Ha;Kim, Tae-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.302-306
    • /
    • 2006
  • The improvement of load following operation of the thermal power plant is influenced to the electrical quality. Analysis of boiler, turbine, and governor system, and the study of control algorithm are necessarily preceded. The thermal power plant is operated by various control systems. In the case of faulty governor system, it takes long days to solve the problem and impossible to repair the mechanism without outage. A non-planned outage is taken into consideration because of economical power production. The paper introduces the followings; In case of system-frequency drop during long term, at 500MW thermal power plant, the generator output was drop. To clear this problem, the control logic is modified with analysis of trend and control algorithm. As a result system frequency drop is prevented during the long tenn and the electric grid operation is improved.

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test (장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구)

  • Kang, Min-Soo;Kim, Do-Seok;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.

Recent Trend to the Forging Technology of Power Plant Components and Status of Forging Company (발전용 소재 단조기술 및 국내 단조업계 동향)

  • Kim, J.T.;Chang, H.S.;Kim, D.K.;Kim, Y.D.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.38-41
    • /
    • 2007
  • The increase of $CO_2$ emission by increasing of fossil fuel usage has been understood a major cause of global warming. The supply of electric energy is heavily dependent on the massive thermal power and nuclear power plant before developing the renewable energy to supply the electric energy stably at a low price. The large and sound forged components of pressure vessel, turbine and generator are widely used in power plant such as wind power, hydroelectric power generation, nuclear power and thermal power plant. This paper is discussed the trend of manufacturing technology for pressure vessel and turbine to satisfy the required condition of utility company. It is also introduced a strategy of forging industry to cope with carbon tax.

  • PDF

Power Generation Unit Modelling in Thermal Power Plant (서천화력 발전기 및 제어시스템 모델링)

  • Kim, Yong-Hak;Kim, Tae-Kyun;Choo, Jin-Bu;Joo, Joon-Young;Song, Seok-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.15-18
    • /
    • 2003
  • This paper provides the procedure to derive model parameters from the field tests. Since the accuracy of power system analysis depends on the accuracy of models used to represent the generation units, the reliability of power system analysis could be affected by parameters used in those models. The objective of this paper is to validate and update the models. So the field test had performed for thermal units and adjusting the variables to match with the measured values derived their model parameters. And the model parameters are verified by comparing the variables between models.

  • PDF

Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (II) (열저항 특성을 고려한 지중송전관로 되메움재의 최적화(II))

  • Kim, You-Seong;Cho, Dae-Seong;Park, Young-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.123-130
    • /
    • 2011
  • In the precedent study it was presented that the comparison of thermal resistivity using various backfill materials including river sand regarding water content, dry unit weight and particle size distribution. Based on the precedent study, this study focused on developing the optimized backfill material that would improve the power transfer capability and minimize the thermal runaway due to an increase of power transmission capacity of underground power cables. When raw materials, such as river sand, recycled sand, crush rock and stone powder, are used for a backfill material, they has not efficient thermal resistivity around underground power cables. Thus, laboratory tests are performed by mixing Fly-ash, slag and floc with them, and then it is found that the optimized backfill material are required proper water content and maximum density. Through various experimental test, when coarse material, crush rock, is mixed with recycled sand, stone powder, slag or floc for a dense material, the thermal resistivity of it has $50^{\circ}C$-cm/Watt at optimum moisture content, and the increase of thermal resistivity does not happen in dry condition. The result of experiments approach the optimization of the backfill materials for underground power cables.