• Title/Summary/Keyword: thermal power

Search Result 4,970, Processing Time 0.033 seconds

The improvement of the efficiency of power plant by the reformation of steam line in the return system (화력발전소에서 응축수 회수계통의 증기배관 개선에 의한 발전시스템의 효율 향상)

  • Kwon, Y.S.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.867-871
    • /
    • 2001
  • The main reason for reviewing the condensate water return system in the auxiliary steam system is to obtain the thermal high efficiency of the power plant and thus save the fossil energy in power plant. This study intends to analyze the thermal efficiency of the power plant and predict the increasing in the generator output by the return system reformation of auxiliary steam line in the thermal power plant.

  • PDF

Approximate Optimum Thermal Design Analysis of Combined Cycle Power Plant (복합화력 발전플랜트의 근사 최적 열설계 해석)

  • Jeon, Y.J.;Shin, H.T.;Lee, B.R.;Kim, T.S.;Ro, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.782-787
    • /
    • 2001
  • An optimum thermal design analysis of the combined cycle power plant with triple pressure heat recovery steam generator was performed by the numerical simulation. The optimum design module used in the paper is DNCONF, a function of IMSL Library, which is widly known as a method to search for the local optimum. The objective function to be minimized is the cost of total power plant including the steam turbine power enhancement premium. The result of this paper shows that the cost reduces if the design point of power plant becomes the local optimum, and many calculations at various initial conditions should be carried out to get the value near the global optimum.

  • PDF

A Study on Thermal Stress of Power Piping due to Loop Design (루프디자인에 따른 배관시스템의 열응력에 관한 연구)

  • Lee, JungHyun;Park, JiSung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.450-455
    • /
    • 2014
  • Domestic power plants have consistently been developed over the years in industrially developed nations with high standards of living. Considering the power plant development strategy, design efficiency is of upmost importance. Therefore, an improper design directly affects the power plant's risk management plan and the potential risks of the piping system. Therefore, in this study, research is intended to be carried out to allow efficient power plant operation, through optimization of the design of the piping system. The purpose of the study is to confirm economic feasibility by changing the piping loop design, expanding the length of pipe loops, and to investigate the thermal stress influence on the piping system through simulations of systems similar in condition to those currently used in existing plants in Korea.

Calculation of CO2 Emission for Fossil-Fired Thermal Power Plant considering Coal-Oil Mix Rate (혼소율을 고려한 화력 발전소의 CO2 대기배출량 계산)

  • Lee, Sang-Joong;Kim, Soon-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.67-72
    • /
    • 2010
  • G8 summit meeting held in July 2008 decided to set up a long-term goal, by 2050, reducing the world greenhouse emissions by half of those emitted in 1990. In November 2009, the Government announced to reduce the national $CO_2$ emission by 30[%] of BAU by 2020. Electric power industries in Korea produce most of their electricity by burning fossil fuels, and emit approximately 28[%] of national $CO_2$ emissions. Monitoring the $CO_2$ emissions. Monitoring the $CO_2$ emission of electric power plants is very important. This paper presents a method to calculate the hourly $CO_2$ emission for a thermal power plant burning mixture of coal and oil using the performance test data and coal-oil mix rate. An example of $CO_2$ emission calculation is also demonstrated.

Heat Transfer Analysis of Coupled Electromagnetic-Thermal Field for Power Transformer (전자계-열계 결합해석에 의한 전력용 변압기의 열전달 해석)

  • Ahn, Hyun-Mo;Oh, Yeon-Ho;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2155-2161
    • /
    • 2009
  • In this paper, we dealt with the electro-thermal coupling analysis for temperature prediction of power transformer. Heat transfer coefficient are calculated using Nusselt number in accordance with heat source generated from transformer windings and core materials. The calculated temperatures in power transformer were compared to those of measured ones and showed good agreement. This coupling method using heat transfer coefficient can be used at the design stage of power transformer efficiently.

Development of a High-precision Small Ship Simulator Model Based on Hydrogen-electric Hybrid to Control an Integrated Thermal Management System (통합 열관리 시스템의 제어를 위한 수소-전기 하이브리드 기반 고정밀 소형 선박 시뮬레이터 모델 개발)

  • MINWOO AN;DAEIL HYUN;JAEYOUNG HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.230-239
    • /
    • 2024
  • Efforts are being made to replace ship diesel engines with electric propulsion motors in response to emission regulations. In particular, in the case of short-range small ships, research is being conducted to replace polymer electrolyte membrane fuel cells (PEMFC) with power sources. However, PEMFC has problems such as slow dynamic response characteristics and reduced durability at high temperatures. To solve this problem, a high-precision ship model was developed with power distribution and thermal management strategies applied, and through this, the required power, heat, and power characteristics of the propulsion system according to the ship's speed profile were analyzed.

A Comparative Analysis on the Economic Effects Between New and Renewable- and Thermal- Power Generation in Korea (한국 신재생에너지발전과 화력발전의 경제적 파급효과 비교분석)

  • Kang, Ji Eun;Lee, Jung Ho;Park, Jung Gu
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.51-63
    • /
    • 2017
  • Paris Agreement on Climate Change(2015) requires to reduce the greenhouse gas emission. One of the responses to the requirement is to change the proportion of power generation, which is summarized to the decrease in thermal power and the increase in new and renewable power. This article conducts a comparative analysis on the economic effects between thermal- and new and renewable- power generations, using the Input-Output Table from The Bank of Korea. The results of this analysis show that the new and renewable power generation has got the larger effects in production-inducing, value-added-inducing, employment-inducing, and supply-shortage scopes, while the smaller effect in price-pervasive scope than the thermal power generation. According to these results, the complex consideration should be taken into when the changes in power generation mix are tried. Especially, the political efforts to reduce the supply-shortage effect of new and renewable power and the price-pervasive effect of thermal power will be important.

Calculation of CO2 Emission w.r.t. Instantaneous Generator Output using Input-output Coefficients of Thermal Power Plant (화력발전소 입출력 특성계수를 이용한 순시 발전출력 대비 CO2 대기배출량 계산)

  • Lee, Sang-Joong;Lim, Jeong-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.120-125
    • /
    • 2007
  • Burning the fossil fuel in the thermal power plants causes green house gas emission. Monitoring of CO2 emission of the thermal power plants is growing more important because the amount produced by them is more than 20 percent of national total emission. This paper proposes a method to calculate the amount of the CO2 emission w.r.t. generator[MW] output using the input-output coefficients of the thermal power plants. The power flow computation together with the CO2 emission calculation are demonstrated in a sample power system.

Optical Characterization of a High-Flux Solar Thermal Simulator (고집광 태양열 시뮬레이터의 광학 특성 평가)

  • Chai, Kwan-Kyo;Lee, Hyun-Jin;Yoon, Hwan-Ki;Kim, Jong-Kyu;Kang, Yong-Heack;Lee, Sung-Wook
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.65-71
    • /
    • 2015
  • A solar thermal simulator is suitable for indoor experiments of solar receivers and reactors when solar insolation and weather conditions are not favorable. Moreover, due to the easy control of electric power input, the solar thermal simulator allows the adjustment of power input incident on solar receivers and reactors and thus the implementation of accurate experiments. We manufactured a solar simulator, which is comprised of three sets of a xenon lamp and an elliptical reflector. In order to serve as a test facility, optical characterization of the solar simulator via radiation heat flux measurement is a critical prerequisite. We applied the flux mapping method to measuring the heat flux distribution of the three lamps. We presented the measurement results in terms of the heat flux distribution, the peak heat flux, the power distribution, the maximum power, and the efficiency for electric power conversion into radiation power. Characterization results show that our solar simulator provides the peak heat flux of $3,019kW/m^2$, the maximum power of 16.9 kW, and the conversion efficiency of 45%, additionally with a 10% operation margin for output increase.

The Monitoring System for Location of Workers Inside a Thermal Power Plant Boiler (화력 발전기 보일러 내부 작업자 위치 모니터링 시스템 개발)

  • Song K.;Yun, C.N.;Shin, Y.H.;Shin, J.H.;Han, S.H.;Jang, D.Y.
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.71-78
    • /
    • 2021
  • There are regularly planned overhaul periods in thermal power plants, which involve the maintenance of the boiler of the power plants. However, thermal power plants workers are always exposed to risk during overhaul periods owing to the narrow space and significant dust inside the boiler. Therefore, it is essential to develop a safety monitoring system that is suitable for operating in this type of environment. In this study, we developed not only a worker three-dimensional (3D)-location monitoring system that can monitor and record the entry/exit of workers, their 3D-location, and fall accidents but also a method to secure the working environment and operation efficiency. This system comprises of a worker tag, which was equipped with an inertial measurement unit, a barometric pressure sensor, and a Bluetooth low energy (BLE), and the tags were given to each worker. In addition, the location of workers inside the boiler was measured using a pedestrian dead reckoning (PDR) method and BLE beacons. The location data of the workers tag were transmitted to the integrated database (DB) server through a gateway, and to the administrator monitoring system. The performance of the system was demonstrated inside an actual thermal power plant boiler, and the accuracy and reliability of the system were verified through a number of repeated tests. These results provide insights on designing a new system for monitoring enclosed spaces.