• Title/Summary/Keyword: thermal plasma coatings

Search Result 120, Processing Time 0.025 seconds

Mechanical Behavior of Layered YSZ Thermal Barrier Coatings using Indentation Test (압입시험법에 의한 YSZ 층상 열차폐 코팅재의 기계적 거동)

  • Lee, Dong-Heon;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.396-403
    • /
    • 2011
  • In this study, we investigated the mechanical behaviors of layered thermal barrier coatings by indentations. Various single and double-layered thermal barrier coatings were deposited by air plasma spray process using different type of commercialized YSZ (Yttria stabilized zirconia) starting powders. Indentation stress-strain curve, load-displacement curve and hardness of the single and the double-layered thermal barrier coatings were obtained experimentally and analyzed. The indentation damages at the same loads were compared, and thus, the results depend on the structure of each coating. The result indicates improvement in damage resistances from tailoring of layered structures in the component of gas turbine system is expected.

Fabrication and Characterization of Ceramics and Thermal Barrier Coatings of Lanthanum Zirconate with Reduced Rare-earth Contents in the La2O2-ZrO2 System (희토류 저감형 란타눔 지르코네이트(La2O2-ZrO2계) 세라믹스와 열차폐코팅의 제조 및 특성평가)

  • Kwon, Chang-Sup;Lee, Sujin;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.413-419
    • /
    • 2015
  • Lanthanum zirconate, $La_2Zr_2O_7$, is one of the most promising candidates for next-generation thermal barrier coating (TBC) applications in high efficient gas turbines due to its low thermal conductivity and chemical stability at high temperature. In this study, bulk specimens and thermal barrier coatings are fabricated via a variety of sintering processes as well as suspension plasma spray in lanthanum zirconates with reduced rare-earth contents. The phase formation, microstructure, and thermo-physical properties of these oxide ceramics and coatings are examined. In particular, lanthanum zirconates with reduced rare-earth contents in a $La_2Zr_2O_7-4YSZ$ composite system exhibit a single phase of fluorite or pyrochlore after fabricated by suspension plasma spray or spark plasma sintering. The potential of lanthanum zirconate ceramics for TBC applications is also discussed.

A study on the thermal properties of the 11 layer thermal barrier (11층 열장벽 피막의 고온물성에 관한 연구)

  • 권현옥;강현욱;남영민;송요승;홍상희;현규택;윤종구;이득용;김선화
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.3-9
    • /
    • 2001
  • The purpose of this study is to evaluate the properties of the functional gradient thermal barrier coatings by plasma spray process. The evaluations of mechanical and thermal properties such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. Furthermore, residual stress and bond strength have been evaluated. The range of thickness of coated layers was 550~600$\mu\textrm{m}$. The range of hardness of layers was 800~900 Hv and the porosity range of coatings was about 7 to 14%. The top coating layer of $ZrO_2$ in thermal barrier was composed of tetragonal structure after spraying. The coated layers of $ZrO_2$ on the Inconel substrate is the best resistance for thermal fatigue. Those coatings had the least compressive stress in comparison with other coatings. In high temperature oxidation test, the coatings on Inconel substrate was better than the coatings on SUS substrate. The bond strength of the concave type was greater than that of linear types and convex types coatings.

  • PDF

Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders (Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직)

  • So, Woong-Sub;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.106-110
    • /
    • 2011
  • A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.

Study on High-Temperature Oxidation Behaviors of Plasma-Sprayed TiB2-Co Composite Coatings

  • Fadavi, Milad;Baboukani, Amin Rabiei;Edris, Hossein;Salehi, Mahdi
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.178-184
    • /
    • 2018
  • In the present study, $TiB_2-Co$ composite coatings were thermally sprayed onto the surface of a 304 stainless steel substrate using an atmospheric plasma spray (APS). The phase analysis of the powders and plasma-sprayed coatings was performed using X-ray diffractometry analysis. The microstructures of the coatings were studied by a scanning electron microscope (SEM). The average particle size and flowability of the feedstocks were also measured. Both $TiB_2-32Co$ and $TiB_2-45Co$ (wt.%) coatings possessed typical dense lamellar structures and high-quality adhesion to the substrate. The oxidation behaviors of the coatings were studied at $900^{\circ}C$ in an atmospheric environment. In addition, the cross-sectional images of the oxidized coatings were analyzed by SEM. A thin and well-adhered layer was formed on the surface of both $TiB_2-Co$ coatings, confirming satisfactory high-temperature oxidation resistance. The kinetic curves corresponding to the isothermal oxidation of the coatings illustrated a short transient stage from rapid to slow oxidation during the early portion of the oxidation experiment.

Effects of Spraying Conditions on the Porosity and Hardness of Plasma Sprayed MgO Stabilized Zirconic Thermal Barrier Coatings (Plasma 용사된 MgO 안정화 지르코니아 단열피복의 기공도와 경도에 미치는 용사조건의 영향)

  • Park, Yeong-Gyu;Choe, Guk-Seon;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.85-94
    • /
    • 1992
  • The size, morphology and distribution of pores which affect on the physical properties of thermal barrier coatings were investigated to find the relationship with spraying parameters. The plasma-sprayed zirconia coatings contained numerous micropores as well as macropores which were appeared as spherical and irregular pores, and cracks. The pore formation process and its characteristics were varied with spraying distance. Porosity itself was varied with spraying parameters such as spray gun current, gas flow rate and the gas used(Ar or $N_2). The Porosity of coatings was ranged from 10 to 18% with the variation of spraying conditions. The relative hardness measured by the scratch test, showed strong dependence on the porosity of coatings rather than spraying parameters.

  • PDF

Tribological properties and thermal stability of TiAlCN coatings deposited by ICP-assisted sputtering

  • Choe, Han Joo;Kwon, Soon-Ho;Lee, Jung-Joong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.209-210
    • /
    • 2013
  • In this study, the tribological and thermal properties of TiAlCN coatings were investigated to evaluate their feasibility in automobile applications. TiAlCN coatings with carbon compositions between 25 and 65 at.% were prepared by inductively coupled plasma (ICP) assisted sputtering and were annealed at 400, 500, and $600^{\circ}C$ in air.

  • PDF

Microstructural Characterization and Plasma Etching Resistance of Thermally Sprayed $Al_2O_3$ and $Y_2O_3$ Coatings

  • Baik, Kyeong-Ho;Lee, Young-Ra
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.234-235
    • /
    • 2006
  • In this study, the plasma sprayed $Al_2O_3$ and $Y_2O_3$ coatings have been investigated for applications of microelectronic components. The plasma sprayed coatings had a well-defined splatted lamellae microstructure, intersplat pores and a higher amount of microcracks within the splats. The plasma sprayed $Y_2O_3$ coating had a relatively lower hardness of 300-400Hv, compared to 650-800Hv for $Al_2O_3$ coating, and would be readily damaged by mechanical attacks such as erosion, wear and friction. For a reactive ion etching against F-containing plasmas, however, the $Y_2O_3$ coating had a much higher resistance than the $Al_2O_3$ coating because of the reduced erosion rate of by-products.

  • PDF

Photocatalytic Property of Nano-Structured TiO$_2$ Thermal Splayed Coating - Part I: TiO$_2$ Coating - (나노구조 TiO$_2$ 용사코팅의 미세조직 제어 공정기술 개발과 광촉매 특성평가 - Part I: TiO$_2$코팅 -)

  • 이창훈;최한신;이창희;김형준;신동우
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • Nano-TiO$_2$ photocatalytic coatings were deposited on the stainless steel 304(50$\times$70$\times$3mm) by the APS(Atmospheric Plasma Spraying). Photocatlytic reaction was tested in MB(methylene blue) aqueous solution. For applying nano-TiO$_2$ powders by thermal spray, the starting nano-TiO$_2$ powder with 100% anatase crystalline was agglomerated by spray drying. Plasma second gas(H$_2$) flow rate and spraying distance were used as principal process parameters which are known to control heat enthalpy(heat input). The relationship between process parameters and the characteristics of microstructure such as the anatase phase fraction and grain size of the TiO$_2$ coatings were investigated. The photo-decomposition efficiency of TiO$_2$ coatings was evaluated by the kinetics of MB aqueous solution decomposition. It was found that the TiO$_2$ coating with a lower heat input condition had a higher anatase fraction, smaller anatase grain size and a better photo-decomposition efficiency.

Heat-treatment of Diffusional Behaviors of Plasma Spray Coated Layer for Fabrication of Abrasive Plates for Diamond (다이아몬드 가공을 위한 연마판의 제조 및 플라즈마 용사 코팅층의 열처리 거동)

  • Choi, Kwangsu;Yang, Seunga;Lee, Jong wan;Kim, Minkyu;Lee, Seong jun;Park, Joon Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.264-270
    • /
    • 2017
  • In this study, while the abrasive plates for diamond have been prepared through mechanical alloying and sintering of elemental powders, a fabrication route of plasma thermal coatings has been adopted for the first time. When diamond knife is sharped or polished, a metal plate has been applied, which is made of mechanical alloying and sintering. In this study, in order to develop a cost - effective manufacturing process, plasma coatings of FeCrNi and Ti on cast iron plate were applied together with Al intermediate layer coatings. The plasma coatings were successfully performed, and the optimum coating layer conditions were discussed in terms of micro-structural observations at the interfaces.