• Title/Summary/Keyword: thermal paper

Search Result 6,211, Processing Time 0.037 seconds

Prediction System of Thermal Errors Implemented on Machine Tools with Open Architecture Controller (개방형 CNC를 갖는 공작기계에 실장한 열변형량 예측 시스템)

  • Kim, Sun-Ho;Ko, Tae-Jo;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.52-59
    • /
    • 2008
  • The accuracy of the machine tools is degraded because of thermal error of structure due to thermal variation. To improve the accuracy of a machine tools, measurement and prediction of thermal error is very important. The main part of thermal source is spindle due to high speed with friction. The thermal error of spindle is very important because it is over 10% in total thermals errors. In this paper, the suitable thermal error prediction technology for machine tools with open architecture controller is developed and implemented to machine tools. Two thermal error prediction technologies, neural network and multi-linear regression, are investigated in several methods. The multi-linear regression method is more effective for implementation to CNC. The developed thermal error prediction technology is implemented on the internal function of CNC.

Investigation of the Thermal Mode-based Thermal Error Prediction for the Multi-heat Sources Model (다중열원모델의 열모드기반 열변위오차 예측)

  • Han, Jun An;Kim, Gyu Ha;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.754-761
    • /
    • 2013
  • Thermal displacement is an important issue in machine tool systems. During the last several decades, thermal error compensation technology has significantly reduced thermal distortion error; this success has been attributed to the development of a precise, robust thermal error model. A major advantage of using the thermal error model is instant compensation for the control variables during the modeling process. However, successful application of thermal error modeling requires correct determination of the temperature sensor placement. In this paper, a procedure for predicting thermal-mode-based thermal error is introduced. Based on this thermal analysis, temperature sensors were positioned for multiple heat-source models. The performance of the sensors based on thermal-mode error analysis, was compared with conventional methods through simulation and experiments, for the case of a slide table in a transient state. Our results show that for predicting thermal error the proposed thermal model is more accurate than the conventional model.

Thermal Stress Analysis of Spent Nuclear Fuel Disposal Canister (심지층 고준위 핵폐기물 처분용기의 열응력 해석)

  • 하준용;권영주;최종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.617-620
    • /
    • 1997
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressure of underground water, swelling pressure of bentonite buffer, and the thermal load due to the heat generation of spent nuclear fuel in the basket etc.. Hence, the canister should be designed to designed to withstand these loads. In this paper, the thermal stress analysis is done using the finite element analysis code, NISA.

  • PDF

A Study on the Thermal Stabilization Design of a New Concept Compact Machining Center (신개념 컴팩트 머시닝센터의 열적 안정화 설계에 관한 연구)

  • Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.119-124
    • /
    • 2010
  • In this paper, thermal stabilization design of a new concept compact machining center has been investigated. A new concept machining center adopted a new X-axis as a NC rotary table. A New concept compact machining center is designed that spindle speed, feed rate and NC Rotary table speed are 12,000rpm, 60m/min and 110rpm each. The analysis is carried out by using FEM simulation Solidworks, CATIA and ANSYS. This paper is focused on the thermal deformation according to temperature distribution of a spindle system and feed drive system. Heat transfer analysis is performed according to heat source and atmosphere contact parts. As a result, this compact machining center is designed as a thermally stable structure.

A Study on the Effectively Improvement of Thermal Runaway Phenomenon by Optimal Resistor without RF Input Signal of SSPA (고출력 SSPA의 입력신호 차단시 최적화 게이트 저항 값에 따른 열폭주 현상의 개선에 관한 연구)

  • 황규일;이용민;나극환;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.910-916
    • /
    • 1999
  • This paper presents the effective improvement of the thermal runaway phenomenon in high power SSPA when the RF input signal is not provided. The total gate resistors are optimized by the experiments and deducing the variation of velocity and currents of thermal runaway, which is based on manufacturer's recommendation. Especially, it is solved the complex thermal runaway that related gate resistors with the gate voltage variable circuit. The result of this paper is able to apply for improving the thermal runaway in existence of high power SSPA for WLL, cellular system and PCS repeater.

  • PDF

A Study on the Mitigation Schemes of Thermal Stratification Phenomenon in a Branch Piping (분기배관에서의 열성층 현상 완화방안에 관한 연구)

  • Park Man-Heung;Kim Kwang-Chu;Lee Seung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.603-611
    • /
    • 2006
  • A variety of schemes were sought for a mitigation of thermal stratification phenomenon in the branch piping of domestic nuclear power plant. Several mechanisms of thermal stratification occurrence were introduced in this paper. A number of factors were selected to find out the schemes for thermal stratification mitigation and the computational analysis were performed. The length of vertical branch piping, the diameter, the radius of curvature of the elbow, the direction of connection between main piping and branch piping, the slope of branch piping, the leakage flow rate, the installation of additional valve, the change of the 1st valve position and another branch piping connected with branch piping were mentioned as factors in this paper.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

A study on ZnO varistor Design Prevented from Thermal Explosion (열폭주 방지 ZnO 배리스터 설계에 대한 연구)

  • Jung, Tae-Hun;Shin, Hee-Sang;Cho, Sung-Min;Choi, Sung-Wook;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1453_1454
    • /
    • 2009
  • This paper examines the characteristics of ZnO varistor to prevent from thermal explosion. We carry out performance evaluation of electrical characteristics on ZnO varistor. we will develop ZnO varistor Prevented from thermal explosion using test result of this paper.

  • PDF

An Experimental Study on the Evaluation of Hydration Heat of Low Heat Concrete (in case of Belite rich Cement) (저발열 콘크리트 수화열 평가의 실험적 연구 (Belite rich 시멘트 중심))

  • 현석훈;박춘근;신영인;김용호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.352-357
    • /
    • 1996
  • In hardening massive concrete, the heat of hydation gives rise to considerable thermal gradientsand thermal stresses, which might cause early age cracking. This paper deals with the results of evaluation of hydration heat of low hear concrete, using Belite rich cement (low heat cement) and compared with OPC, slag added cement and fly ash addedcement. Result of evaluation of hydration are presented in this paper. The concrete made with Belite rich cement gets low temperature of center point and low thermal gradients between surface and center points.

  • PDF

Convenient Thermal Modeling for Loss Distribution method of 3-Level Active NPC Inverter using Newton's Law of cooling (Active NPC 인버터의 손실 분배 제어를 위한 뉴턴의 냉각법칙 기반의 간단한 열 모델링 기법)

  • Hyun, Seung-Wook;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.71-80
    • /
    • 2015
  • This paper proposes a convenient thermal modeling method for loss distribution control method of 3-level Active NPC(Neutral Point Clamped) inverter. In the drawback of conventional 3-level NPC, the generated losses can occur unbalance in each switching device, as a result, thermal utilization of designed system has been decreased. In order to compensate unbalanced losses, Active NPC inverter performed loss balancing control with thermal modeling during operation of each switching device. Therefore, this paper deals with a convenient thermal modeling method based on newton's law of cooling rather than conventional thermal modeling method. Both simulation and experimental results based on 10kW 3-level Active NPC inverter confirm the validity of the analysis performed in the study.