• Title/Summary/Keyword: thermal packaging

Search Result 539, Processing Time 0.022 seconds

Development of Textile Metal Matrix Composites for Electronic Packaging (전자 패키징용 직조형 금속복합재료 개발)

  • 이상관;김진봉;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.183-186
    • /
    • 2000
  • A new textile metal matrix composite fur electronic packaging was developed and characterized. The thermal management materials consist of a plain woven carbon fabric as reinforcement and pure aluminum as matrix. The finite element method has been utilized in the analysis of thermal stress between the constituent components of packaging. The prototype part was manufactured by the liquid pressurizing method. The composite has CTE values of 4 to $5{\times}10^{-6}\;^{\circ}C^{-1}$10 in the range of $25^{\circ}C$ ~ 175$^{\circ}C$, resulting in good agreement with electronic materials such as Si and GaAs.

  • PDF

The Analysis of Heat Transfer through the Multi-layered Wall of the Insulating Package

  • Choi, Seung-Jin
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • Thermal insulation is used in a variety of applications to protect temperature sensitive products from thermal damage. Several factors affect the performance of insulation packages. Among these factors, the thermal resistance of the insulating wall is the most important factor to determine the performance of the insulating package. In many cases, insulating wall consists of multi-layered structure and the heat transfer through this structure is a very complex process. In this study, an one-dimensional mathematical model, which includes all of the heat transfer principles covering conduction, convection and radiation in multi-layered structure, were developed. Based on this model, several heat transfer phenomena occurred in the air space between the layer of the insulating wall were investigated. From the simulation results, it was observed that the heat transfer through the air space between the layer were dominated by conduction and radiation and the low emissivity of the surface of each solid layer of the wall can dramatically increase the thermal resistance of the wall. For practical use, an equation was derived for the calculation of the thermal resistance of a multi-layered wall.

  • PDF

Thermal Analysis and Optimization of 6.4 W Si-Based Multichip LED Packaged Module

  • Chuluunbaatar, Zorigt;Kim, Nam Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.234-238
    • /
    • 2014
  • Multichip packaging was achieved the best solution to significantly reduce thermal resistance at the same time, to increase luminance intensity in LEDs packaging application. For the packaging, thermal spreading resistance is an important parameter to get influence the total thermal performance of LEDs. In this study, silicon-based multichip light emitting diodes (LEDs) packaged module has been examined for thermal characteristics in several parameters. Compared to the general conventional single LED packaged chip module, multichip LED packaged module has many advantages of low cost, low density, small size, and low thermal resistance. This analyzed module is comprised of multichip LED array, which consists of 32 LED packaged chips with supplement power of 0.2 W at every single chip. To realize the extent of thermal distribution, the computer-aided design model of 6.4 W Si-based multichip LED module was designed and was performed by the simulation basis of actual fabrication flow. The impact of thermal distribution is analyzed in alternative ways both optimizing numbers of fins and the thickness of that heatsink. In addition, a thermal resistance model was designed and derived from analytical theory. The optimum simulation results satisfies the expectations of the design goal and the measurement of IR camera results. tart after striking space key 2 times.

EFFECTS OF PROCESS INDUCED DEFECTS ON THERMAL PERFORMANCE OF FLIP CHIP PACKAGE

  • Park, Joohyuk;Sham, Man-Lung
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.39-47
    • /
    • 2002
  • Heat is always the root of stress acting upon the electronic package, regardless of the heat due to the device itself during operation or working under the adverse environment. Due to the significant mismatch in coefficient of thermal expansion (CTE) and the thermal conductivity (K) of the packaging components, on one hand intensive research has been conducted in order to enhance the device reliability by minimizing the mechanical stressing and deformation within the package. On the other hand the effectiveness of different thermal enhancements are pursued to dissipate the heat to avoid the overheating of the device. However, the interactions between the thermal-mechanical loading has not yet been address fully. in articular when the temperature gradient is considered within the package. To address the interactions between the thermal loading upon the mechanical stressing condition. coupled-field analysis is performed to account the interaction between the thermal and mechanical stress distribution. Furthermore, process induced defects are also incorporated into the analysis to determine the effects on thermal conducting path as well as the mechanical stress distribution. It is concluded that it feasible to consider the thermal gradient within the package accompanied with the mechanical analysis, and the subsequent effects of the inherent defects on the overall structural integrity of the package are discussed.

  • PDF

Thermal Ratchetting of the Conductive Adhesives Joints Subjected to the Thermal Cycles (전도성 접착제의 열경화 응력에 대한 해석)

  • 박주혁;서승호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.208-213
    • /
    • 2002
  • When a thermoset conductive adhesive joints are subjected to the thermal cycles, the thermal stresses are developed around the joints. Most of in-plane, hi-axial components of these residual stresses induces large tensile peel stresses and weakens adhesive joints. Also these stresses vary with thermal cycles, and result in thermal fatigue loading and debonding propagation. In this study, the thermal ratchetting effect in conductive adhesive joints are evaluated by the finite element analysis with the viscoelastic material model. In order to Investigate the relationship between thermal ratchetting and glass transition temperature, the mathematical material model has been developed experimentally by dynamic mechanical analysis. These material models are implemented to the finite element analysis with thermal loading cycles. And the stress profiles around the conductive adhesive joints are calculated. It has been observed that the thermal ratchetting occurs when the maximum temperature of thermal cycles is above the glass transition temperature. The peel and shear stress components increase as the thermal loading time increases. This will contributes to thermal fatigue fracture of the joints.

  • PDF

Uncooled Microbolometer FPA Sensor with Wafer-Level Vacuum Packaging (웨이퍼 레벨 진공 패키징 비냉각형 마이크로볼로미터 열화상 센서 개발)

  • Ahn, Misook;Han, Yong-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.300-305
    • /
    • 2018
  • The uncooled microbolometer thermal sensor for low cost and mass volume was designed to target the new infrared market that includes smart device, automotive, energy management, and so on. The microbolometer sensor features 80x60 pixels low-resolution format and enables the use of wafer-level vacuum packaging (WLVP) technology. Read-out IC (ROIC) implements infrared signal detection and offset correction for fixed pattern noise (FPN) using an internal digital to analog convertor (DAC) value control function. A reliable WLVP thermal sensor was obtained with the design of lid wafer, the formation of Au80%wtSn20% eutectic solder, outgassing control and wafer to wafer bonding condition. The measurement of thermal conductance enables us to inspect the internal atmosphere condition of WLVP microbolometer sensor. The difference between the measurement value and design one is $3.6{\times}10-9$ [W/K] which indicates that thermal loss is mainly on account of floating legs. The mean time to failure (MTTF) of a WLVP thermal sensor is estimated to be about 10.2 years with a confidence level of 95 %. Reliability tests such as high temperature/low temperature, bump, vibration, etc. were also conducted. Devices were found to work properly after accelerated stress tests. A thermal camera with visible camera was developed. The thermal camera is available for non-contact temperature measurement providing an image that merged the thermal image and the visible image.

Flip Chip Assembly Using Anisotropic Conductive Adhesives with Enhanced Thermal Conductivity

  • Yim, Myung-Jin;Kim, Hyoung-Joon;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.9-16
    • /
    • 2005
  • This paper presents the development of new anisotropic conductive adhesives with enhanced thermal conductivity for the wide use of adhesive flip chip technology with improved reliability under high current density condition. The continuing downscaling of structural profiles and increase in inter-connection density in flip chip packaging using ACAs has given rise to reliability problem under high current density. In detail, as the bump size is reduced, the current density through bump is also increased. This increased current density also causes new failure mechanism such as interface degradation due to inter-metallic compound formation and adhesive swelling due to high current stressing, especially in high current density interconnection, in which high junction temperature enhances such failure mechanism. Therefore, it is necessary for the ACA to become thermal transfer medium to improve the lifetime of ACA flip chip joint under high current stressing condition. We developed thermally conductive ACA of 0.63 W/m$\cdot$K thermal conductivity using the formulation incorporating $5 {\mu}m$ Ni and $0.2{\mu}m$ SiC-filled epoxy-bated binder system to achieve acceptable viscosity, curing property, and other thermo-mechanical properties such as low CTE and high modulus. The current carrying capability of ACA flip chip joints was improved up to 6.7 A by use of thermally conductive ACA compared to conventional ACA. Electrical reliability of thermally conductive ACA flip chip joint under current stressing condition was also improved showing stable electrical conductivity of flip chip joints. The high current carrying capability and improved electrical reliability of thermally conductive ACA flip chip joint under current stressing test is mainly due to the effective heat dissipation by thermally conductive adhesive around Au stud bumps/ACA/PCB pads structure.

  • PDF

Transient Characteristic of a Metal-Oxide Semiconductor Field Effect Transistor in an Automotive Regulator in High Temperature Surroundings

  • Kang, Chae-Dong;Shin, Kye-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.178-181
    • /
    • 2010
  • An automotive IC voltage regulator which consists of one-chip based on a metal-oxide semiconductor field effect transistor (MOSFET) is investigated experimentally with three types of packaging. The closed type is filled with thermal silicone gel and covered with a plastic lid on the MOSFET. The half-closed type is covered with a plastic case but without thermal silicone gel on the MOSFET. Opened type is no lid without thermal silicone gel. In order to simulate the high temperature condition in engine bay, the operating circuit of the MOSFET is constructed and the surrounding temperature is maintained at $100^{\circ}C$. In the overshoot the maximum was mainly found at the half-closed packaging and the magnitude is dependent on the packaging type and the surrounding temperature. Also the impressed current decreased exponentially during the MOSFET operation.