• Title/Summary/Keyword: thermal oxidation

Search Result 1,005, Processing Time 0.021 seconds

Prevention of Discoloration and Storage Stability in Canned Ark Shell (새고막 통조림 변색방지 및 저장중 품질변화)

  • 배태진;김귀식
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.243-248
    • /
    • 1998
  • Ark shell was known as shellfish that had hemoglobin as blood pigment and the action of mecidine, was consumed the great part of it as raw material, though it was produced about 13,000 M/T per year. Ark shell was processed the infinitesimal quantity as conned product, bout canned ark shell had problem that occurrenced discoloration after heat treatment during processing and storage. This discoloration mechanism during processing and storage was not cleared. This study was carried out to understand characteristics of the hemoglobin as blood pigment and carotenoid as meat pigment in ark shell and management of proper processing conditions for prevention of oxidation and discoloration by thermal treatment. When treated by digestion of 0.1% BHA, 0.1% Tenox-II, 0.5% Na2EDTA, 0.05% NDGA and 3% salt soln., 0.1% BHA solution was most suitable for stability of carotenoid that the retention ratio of carotenoids were 63.1% after heating to 116$^{\circ}C$ for 120 minutes. In preparation of canned ark shell and storage at 37$\pm$1$^{\circ}C$ for 60 days, the chemical composition, pH and salinity ere stable. And contents of total carotenoid were decreased slightly from 0.83mg% to 0.727mg%. The viable cell count were 6.92$\times$103 cfu/ml at raw ark shell, after processed and storage were not detected. The predominant amino acids in the raw ark shell were glutamic acid(19.7%), arginine(16.0%), glycine(12.6%), alanine(12.2%) and aspartic acid(7.6%). When 60 days stored, the contents of amino acid were stable. And the predominant nuclotide and their related compounds in the raw ark shell were hypoxanthine(2.14$\mu$mol/g), IMP(1.94$\mu$mol/g) and ATP(0.87$\mu$mol/g), and storage at 37$\pm$1$^{\circ}C$ for 60 days, the quantity order were same as raw material.

  • PDF

Studies on the Volatile Flavor Compounds of Sesame Oils with Roasting Temperature (볶음온도에 따른 참기름의 휘발성향기성분 변화)

  • Kim, Hyeon-Wee;Park, Ki-Moon;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.238-245
    • /
    • 2000
  • This study was investigated to compare the changes of flavors in sesame oil with roasting temperature $(110^{\circ}C{\sim}230^{\circ}C)$. In the results of analyzing the volatile flavor compounds of sesame oil with GC and GC/MS, 26 pyrazines, 11 pyridines, 9 thiazoles, 6 furans, 8 pyrroles, 5 phenols, 8 aldehydes, 8 hydrocarbons, 7 alcohols, 2 indoles, 3 ketones, 10 acids, 4 nitriles, 7 esters, and 5 others were isolated, identified, and quantified. The total amount of flavor compounds was increased with roasting temperature. Detected flavors could be devided into top(peak No. $1{\sim}91$), middle$(92{\sim}197)$ and last note$(198{\sim}224)$ by rentention time. The top notes(initial content 19.87 ppm) which contain pyrazines and provide representative roasted flavors were increased significantly with roasting temperature. Initial content of middle note(17.72 ppm) was increased to 36.71 ppm at $170^{\circ}C$, to 95.61 ppm at $220^{\circ}C$, and to 138.62 ppm at $230^{\circ}C$. Last note was almost unchanged up to $170^{\circ}C$ and increased at $190^{\circ}C$, whereas it indicated a tendency to decrease at $230^{\circ}C$. Pyrazines such as methylpyrazine, 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine which indicate the major components among volatile flavors were increased slightly up to $150^{\circ}C$ and revealed the higher increase than any other components above $170^{\circ}C$. This tendency was also similar to pyridines, thiazoles, and furans. Most of these compounds are assumed to be developed by thermochemical reactions of sesame components by roasting above $170^{\circ}C$. It seemed that a lot of increase in phenols above $210^{\circ}C$ resulted from the production of guaiacol. Acids were almost unchanged up to $190^{\circ}C$, increased at $210^{\circ}C$, and then decreased above $220^{\circ}C$. It seemed to be resulted from pyrolysis of free fatty acids formed from thermal oxidation of oil.

  • PDF

Effect of Fe and BO3 Substitution in Li1+xFexTi2-x(PO4)3-y(BO3)y Glass Electrolytes (Li1+xFexTi2-x(PO4)3-y(BO3)y 계 유리 전해질에서 Fe 및 BO3 치환 효과)

  • Choi, Byung-Hyun;Jun, Hyung Tak;Yi, Eun Jeong;Hwang, Haejin
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.52-64
    • /
    • 2021
  • The effect of Fe and BO3 doping on structure, thermal, and electrical properties of Li1+xFexTi2-x(PO4)3-y(BO3)y (x = 0.2, 0.5)-based glass and glass ceramics was investigated. In addition, their crystallization behavior during sintering and ionic conductivity were also investigated in terms of sintering temperature. FT-IR and XPS results indicated that Fe2+ and Fe3+ ions in Li1+xFexTi2-x(PO4)3-y(BO3)y glass worked as a network modifier (FeO6 octahedra) and also as a network former (FeO4 tetrahedra). In the case of the glass with low substitution of BO3, boron formed (PB)O4 network structure, while boron preferred BO3 triangles or B3O3 boroxol rings with increasing the BO3 content owing to boic oxide anomaly, which can result in an increased non-bridging oxygen. The glass transition temperature (GTT) and crystallization temperature (CT) was lowered as the BO3 substitution was increased, while Fe2+ lowered the GTT and raised the CT. The ionic conductivity of Li1+xFexTi2-x(PO4)3-y(BO3)y glass ceramics were 8.85×10-4 and 1.38×10-4S/cm for x = 0.2 and 0.5, respectively. The oxidation state of doped Fe and boric oxide anomaly were due to the enhanced lithium ion conductivity of glass ceramics.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges (동시베리아 얼음쐐기 시료의 해동방법이 시료의 화학적 특성분석에 미치는 영향)

  • Subon Ko;Jinho Ahn;Alexandre Fedorov;Giehyeon Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.727-736
    • /
    • 2022
  • Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.