DOI QR코드

DOI QR Code

Effect of Fe and BO3 Substitution in Li1+xFexTi2-x(PO4)3-y(BO3)y Glass Electrolytes

Li1+xFexTi2-x(PO4)3-y(BO3)y 계 유리 전해질에서 Fe 및 BO3 치환 효과

  • Choi, Byung-Hyun (Department of Materials Science and Engineering, Inha University) ;
  • Jun, Hyung Tak (Department of Materials Science and Engineering, Inha University) ;
  • Yi, Eun Jeong (Department of Materials Science and Engineering, Inha University) ;
  • Hwang, Haejin (Department of Materials Science and Engineering, Inha University)
  • 최병현 (인하대학교 신소재공학과) ;
  • 전형탁 (인하대학교 신소재공학과) ;
  • 이은정 (인하대학교 신소재공학과) ;
  • 황해진 (인하대학교 신소재공학과)
  • Received : 2021.06.02
  • Accepted : 2021.07.20
  • Published : 2021.08.31

Abstract

The effect of Fe and BO3 doping on structure, thermal, and electrical properties of Li1+xFexTi2-x(PO4)3-y(BO3)y (x = 0.2, 0.5)-based glass and glass ceramics was investigated. In addition, their crystallization behavior during sintering and ionic conductivity were also investigated in terms of sintering temperature. FT-IR and XPS results indicated that Fe2+ and Fe3+ ions in Li1+xFexTi2-x(PO4)3-y(BO3)y glass worked as a network modifier (FeO6 octahedra) and also as a network former (FeO4 tetrahedra). In the case of the glass with low substitution of BO3, boron formed (PB)O4 network structure, while boron preferred BO3 triangles or B3O3 boroxol rings with increasing the BO3 content owing to boic oxide anomaly, which can result in an increased non-bridging oxygen. The glass transition temperature (GTT) and crystallization temperature (CT) was lowered as the BO3 substitution was increased, while Fe2+ lowered the GTT and raised the CT. The ionic conductivity of Li1+xFexTi2-x(PO4)3-y(BO3)y glass ceramics were 8.85×10-4 and 1.38×10-4S/cm for x = 0.2 and 0.5, respectively. The oxidation state of doped Fe and boric oxide anomaly were due to the enhanced lithium ion conductivity of glass ceramics.

Li1+xFexTi2-x(PO4)3-y(BO3)y (x = 0.2, 0.5)계 유리에서 Fe doping과 BO3 치환이 유리 또는 결정화유리(glass-ceramics) 전해질의 구조적, 열적 및 전기적 특성에 미치는 영향을 조사하였다. 또한, Li1.5Fe0.5Ti1.5(BO3)3 유리분말을 소결하고, 소결 온도에 따른 결정상과 이온전도도 영향도 검토하였다. Li1+xFexTi2-x(PO4)3-y(BO3)y 유리에서 Fe2+ 및 Fe3+ 이온은 network modifier로서 FeO6 팔면체를 형성하거나 network former로서 유리망목구조에 들어가 FeO4 유사 사면체를 형성하면서 유리의 구조를 변화시키는 것으로 확인되었다. 한편, BO3는 BO3 또는 BO4 그룹을 형성하였는데, BO3 치환량이 작은 경우 boron은 (PB)O4 망목구조를 형성하지만, BO3 치환량이 증가하면 붕소이상현상(boric oxide anomaly)이 생겨나면서 BO4는 BO3로 변화하고 이로 인하여 비가교산소(non-bridging oxygen)가 증가하였다. BO3 치환은 유리전이온도와 결정화 온도를 낮추는 효과가 있으며, Fe 첨가량이 증가하면 Fe3+의 일부는 Fe2+로 환원되며, 유리전이온도와 연화온도를 낮아지게 하고 결정화온도를 높아지게 하는 것으로 확인되었다. Li1+xFexTi2-x(PO4)3-y(BO3)y (x = 0.2, 0.5) 유리에서 BO3 함량이 증가함에 따라 이온전도도는 증가하였으며, x = 0.2 및 0.5에서 각각 8.85×10-4 및 1.38×10-4S/cm의 이온전도도값을 나타내었다. 본 연구에서 얻어진 높은 이온전도도는 Fe3+의 산화상태 변화와 붕소이상현상에 의한 BO3 생성 및 이로 인한 비가교산소의 생성에 기인한 것으로 생각된다. Li1.5Fe0.5Ti1.5(BO3)3 유리를 800℃에서 소결한 결과 이온전도도가 급격히 저하되었는데 이는 결정화유리 분말이 고온에서 유리화되었기 때문으로 생각된다. 따라서 유리분말을 800℃에서 소결한 후, 다시 460℃에서 조핵하고, 600℃에서 결정성장을 시킨 결과, 이온전도도가 열처리전과 동등 수준으로 회복되는 것을 확인하였다.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (No. 1415154009). This work was also supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Knowledge Economy (No. 20172420108680) of South Korea.

References

  1. R. B. Nuernberg, and A. C. M. Rodrigues, A new NASICON lithium ion-conducting glass-ceramic of the Li1+xCrx(Gey,Ti1-y)2-x(PO4)3 System, Solid State Ionics, 301, 1 (2017). https://doi.org/10.1016/j.ssi.2017.01.004
  2. R. Kahlaoui, K. Arbi, R. Jimenez, I. Sobrados, J. Sanz, and R. Ternane, Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi22x(PO4)3 NASICON-type materials, J Mater Sci., 55 8464 (2020).
  3. J. Zhang, Z. Luo, Y. Zhang, C. Qin, H. Liang, and A. Lu, Controllable preparation and high ionic conductivity of Fe2O3-doped 46Li2O-4Al2O3-50P2O5 glass-ceramics, J. Non-Cryst. Solids, 500, 401 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.08.029
  4. E. Mohaghegh, A. Nemati, B. E. Yekta, and S. Banijamali, Effects of Fe203 content on ionic conductivity of Li2O-TiO2-P2O5 glasses and glass-ceramics, Mater. Chem. Phys., 190, 8 (2017). https://doi.org/10.1016/j.matchemphys.2016.12.066
  5. P. Goharian, A. R. Aghaei, B. E. Yekta, and S. Banijamali, Ionic conductivity and microstructural evaluation of Li2O-TiO2-P2O5-SiO2 glass-ceramics, Ceram. Inter. 41, 1757 (2015). https://doi.org/10.1016/j.ceramint.2014.09.121
  6. P. Goharian, B. E. Yekta, A. R. Aghaei, and S. Banijamali. Lithium ion-conducting glass-ceramics in the system Li2O-TiO2-P2O5-Cr2O3-SiO2, J. Non-Crystalline Solids, 409, 120 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.11.016
  7. R.-H. Shin, S. I. Son, Y. S. Han, Y. D. Kim, H.-T. Kim, and S.-S. Ryu, Sintering behavior of garnet-type Li7La3Zr2O12-Li3BO3 composite solid electrolytes for allsolid-state lithium batteries, Solid State Ionics, 301, 10 (2017). https://doi.org/10.1016/j.ssi.2017.01.005
  8. Z. Luo, C. Qin, Y. Wu, W. Xu, S. Zhang, and A. Lu, Structure and properties of Fe2O3-doped 50Li2O-10B2O3-40P2O5 glass and glass-ceramic electrolytes, Solid state Ionics, 345, 115177 (2020). https://doi.org/10.1016/j.ssi.2019.115177
  9. T. Minami, A. Hayashi, and M. Tatsumisago, Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries, Solid State Ionics, 177, 2715 (2006). https://doi.org/10.1016/j.ssi.2006.07.017
  10. H. Aono, E. Sugimoto, Y. Sadaoka, N. lmanaka, and G. AdachiI, Ionic Conductivity of Solid Electrol ytes Based on Lithium Titanium Phosphate, J. Electrochem. Soc., 137, 1023 (1990). https://doi.org/10.1149/1.2086597
  11. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, Ionic Conductivity of Li Ti2(PO4)3 Mixed with Lithium Salt, Jpn. Chem. Lett., 19, 331 (1990). https://doi.org/10.1246/cl.1990.331
  12. H. Aono, E. Sugimoto, Y. Sadaoka, N. lmanaka, and G. Adachi, Ionic Conductivity of the Lithium Titanium Phosphate (Li1+x MxTi2-x(PO4)3 M=Al, Sc, Y, and La) Systems, J. Electrochem. Soc., 136, 590 (1989). https://doi.org/10.1149/1.2096693
  13. N. Machida, K. Fujii, and T. Minami, Preparation and ionic conductivity of rapidly quenched glass of system Li2O-TiO2-P2O5, Jpn. Chem. Lett., 21, 367 (1991).
  14. J. Fu, Fast Li+ Ion Conduction in Li2O-A12O3-TiO2-SiO2-P2O5 Glass-Ceramics, J. Am Ceram. Soc., 80, 1901 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03070.x
  15. K. Takahashi, J. Ohmura, D. Im, D. J. Lee, T. Zhang, N. Imanishi, A. Hirano, M. B. Phillipps, Y. Takeda, and O. Yamamoto, A Super High Lithium Ion Conducting Solid Electrolyte of Grain Boundary Modified Li1.4Ti1.6Al0.4(PO4)3, J. Electrochem. Soc., 159, A342-A348 (2012).
  16. G. F. Ortiz, M. C. Lopez, P. Lavela, C. Vidal-Abarca, and J. L. Tirado, Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping, Solid State Ionics., 262, 573 (2014). https://doi.org/10.1016/j.ssi.2013.09.012
  17. B Lagowska, I. Waclawska, J. Sulowska, Z. Olejniczak, B. Sulikowski, and M. Szumera, Glass transition effect in liquation silicate-borate-phosphate glasses, J. Thermal Anal. Calorimetry, 138, 2251 (2019) https://doi.org/10.1007/s10973-019-08446-8
  18. L. Zhang, R. K. Brow, M. E. Schlesinger, L. Ghussn, and E. D. Zanotto, Glass formation from iron-rich phosphate melts, J. Non-Crystalline Solids, 356, 1252 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.04.019
  19. A. Kishioka, Glass Formation in the Li2O-TiO2-P2O5, MgO-TiO2-P2O5 and CaO-TiO2-P2O5 Systems, Bull. Chem. Soc. Jpn., 51, 2559 (1978). https://doi.org/10.1246/bcsj.51.2559
  20. S.-Y. Choi, Y.-S. Kim, J.-H. Kim, J.-Y. Jung, I.-G. Kim, H.-J. Park, J.-S. Bae, and B.-K. Ryu, Effects of Substituting B2O3 for P2O5 on the Structures and Properties of V2O5-P2O5 Glass Systems (II), Korean J. Met. Mater, 53, 195 (2015).
  21. S. Das, and A. Ghosh, Structure and electrical properties of vanadium boro-phosphate glasses, J. Non-Cryst. Solids, 458, 28 (2017). https://doi.org/10.1016/j.jnoncrysol.2016.12.012
  22. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3), Solid State lonics, 47, 257 (1991). https://doi.org/10.1016/0167-2738(91)90247-9
  23. Y. Kobayashi, T. Takeuchi, M. Tabuchi, K. Ado, and H. Kageyama, Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering, J. Power Sources, 81-82, 853 (1999). https://doi.org/10.1016/S0378-7753(99)00121-4
  24. E. A. Il'ina, A. A. Raskovalov, N. S. Saetova, B. D. Antonov, O. G. Reznitskikh, Composite electrolytes Li7La3Zr2O12-glassy Li2O-B2O3-SiO2, Solid State lonics, 26, 26 (2016).
  25. S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, and T. Asaoka, Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery, J. Power Sources, 265, 10 (2014).
  26. K. H. Yoon, M. S. Kwak, and Y.-K. Lee, Structure and Electrical Properties of L2O-TiO2-P2O5 Glass, J. Kor. Ceram. Soc., 40, 178 (2003). https://doi.org/10.4191/KCERS.2003.40.2.178
  27. N. J. Kim, S.-H. Im, D.-H. Kim, D.-K Yoon, and B.-K. Ryu, Structure and properties of borophosphate glasses, Electro. Mater. Letters, 6, 103-106 (2010). https://doi.org/10.3365/eml.2010.09.103
  28. Q. Liao, F. Wang, K. Chen, S. Pan, H. Zhu, M. Lu, and J. Qin, FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes, J. Molecular Structure, 1092, 187 (2015). https://doi.org/10.1016/j.molstruc.2015.03.034
  29. T. Q. Leow, P. M. Leong, T. Y. Eeu, Z. Ibramim, and R. Hussin, Study of Structural and Luminescence Properties of Lead Lithium Borophosphate Glass System Doped with Ti Ions, Sains Malaysiana, 43, 929 (2014).
  30. S. Machill, T. Shodai, Y. Sakurai, and J. Yamaki, Electrochemical and structural investigations of the reaction of lithium with tin-based composite oxide glasses, J. Solid State Electrochem., 3, 97 (1999). https://doi.org/10.1007/s100080050134
  31. Y. M. Moustafa, K. E. Egili, H. Doweidar, and I. Abbas, Structure and electric conduction of Fe2O3-P2O5 glasses, Physica B, 353, 82 (2004). https://doi.org/10.1016/j.physb.2004.09.004
  32. C. Gautam, A. K. Kumar, and A. K. Singh, A Review on Infrared Spectroscopy of Borate Glasses with Effects of Different Additives, Inter. Scholarly Res. Network ISRN Ceram., 2012, 428497 (2012).
  33. H. Li, X. Liang, C. Wang, H. Yu, Z. Li, and S. Yang, Influence of rare earth addition on the thermal and structural stability of CaO-Fe2O3-P2O5 glasses, J. Molecular Structure, 1076, 592 (2014). https://doi.org/10.1016/j.molstruc.2014.08.032
  34. E. K. Abdel-Khalek, E. A. Mohamed, S. M. Salem, and I. Kashi, Structural and dielectric properties of (100-x)B2O3-(x/2)Bi2O3-(x/2)Fe2O3 glasses and glassceramic containing BiFeO3 phase, J. Non-crystalline solids, 492, 49 (2018).
  35. H. Farouk, A. A. Solimani, S. A. Aly H.Z.E.-Deen, I. Kashif, and A. M. Sanad, Role of iron addition on structure and electrical and magnetic properties of lithium lead borate glasses, Mater. Sci. Eng. B, 38, 217 (1996). https://doi.org/10.1016/0921-5107(95)01247-8
  36. L. Armelao, D. Barreca, G. Bottaro, C. Canevali, F. Morazzoni, R. Scotti, and E. Tondello, Boron and Phosphorus Quantification in Sol-Gel BPSG Glasses by XPS, Surf. Sci. Spectra 10, 40, 39 (2003).
  37. B.H. Kim, Glass technology, 청문각, 서울, 371 (1990).
  38. H. Chen, H. Tao, Q. Wu, and X. Zhao, Crystallization Kinetics of Superionic Conductive Al(B, La)-Incorporated LiTi2(PO4)3 Glass-Ceramics, J. Am. Ceram. Soc., 96, 801 (2013). https://doi.org/10.1111/jace.12094
  39. R. T. Croswell, A. Reisman, D. L. Simpson, D. Temple, and C. K. Williams, Differential Thermal Analysis of Glass Mixtures Containing SiO2, GeO2, B2O3, and P2O5, J. Electrochemical Soc., 146, 4569 (1999). https://doi.org/10.1149/1.1392676
  40. K. Waetzig, C. Heubner, and M. Kusnezo, Reduced Sintering Temperatures of Li+ Conductive Li1.3Al0.3Ti1.7 (PO4)3 Ceramics, Crystals, 10, 408 (2020). https://doi.org/10.3390/cryst10050408
  41. I. Abrahams, and E. Hadzifejzovic, Lithium ion conductivity and thermal behaviour of glasses and crystallised glasses in the system Li2O-Al2O3-TiO2-P2O5, Solid State Ionics 134, 249 (2000). https://doi.org/10.1016/S0167-2738(00)00768-2
  42. Y. Yoon, J. Kim, C. Park, and D. Shin, The relationship of structural and electrochemical properties of NASICON structure Li1.3Al0.3Ti1.7(PO4)3 electrolytes by a sol-gel method, J. Ceram. Processing Res., 14, 356 (2013).