• Title/Summary/Keyword: thermal noise

Search Result 546, Processing Time 0.027 seconds

Thermal Resolution Analysis of Lock-in Infrared Microscope (위상잠금 열영상 현미경의 온도분해능 분석)

  • Kim, Ghiseok;Lee, Kye-Sung;Kim, Geon-Hee;Hur, Hwan;Kim, Dong-Ik;Chang, Ki Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • In this study, we analyzed and showed the enhanced thermal resolution of a lock-in infrared thermography system by employing a blackbody system and micro-register sample. The noise level or thermal resolution of an infrared camera system is usually expressed by a noise equivalent temperature difference (NETD), which is the mean square of the deviation of the different values measured for one pixel from its mean values obtained in successive measurements. However, for lock-in thermography, a more convenient quantity in the phase-independent temperature modulation amplitude can be acquired. On the basis of results, it was observed that the NETD or thermal resolution of the lock-in thermography system was significantly enhanced, which we consider to have been caused by the averaging and filtering effects of the lock-in technique.

Noise distribution analysis and noise barrier measures of thermal power plant (화력발전소의 소음분포 해석 및 방음벽 대책)

  • Yun, Jun-Ho;Kim, Won-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • An analysis model of noise map is proposed to evaluate and reduce the acoustical noise of power plant and its surroundings. The sound powers of many noise sources are estimated by measuring the sound levels of major equipments in the power plant. The analysis of noise has been made by using ENPro that is a commercial program for environmental noise prediction. The proposed model is verified by comparing the results from noise analysis and measurement at several points of the power plant units 1 through 4, and residential areas. It is shown that noise map simulation using the proposed model has a reliability, since the overall noise level approximates within the error of ±2 dB. Furthermore, through noise analysis, the increasing effect of noise due to newly established units 5 and 6 on residential areas is also analyzed. Consequently, the noise barrier is designed to meet an environmental noise standard and satisfy low cost and safety conditions.

Design of Two Zoom Infrared Camels using Noise Uniformity Correction by Shutter Lens (셔터렌즈에 의한 검출기 불균일 보정을 적용한 이중배율 적외선 카메라 설계)

  • Ahn, Gyou-Bong;Kim, Seo-Hyun;Jung, Jae-Chul;Jo, Mun-Shin;Kim, Chang-Woo;Kim, Hyun-Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.135-141
    • /
    • 2007
  • This paper describes the design technology for a third generation thermal imaging system, which is more compact than before, using a $320\times240$ mid-IR focal plane detector. The third generation non-scanning thermal imaging system was constructed as a compact thermal imaging module as a reconnaissance, surveillance and navigation sensor for helicopter and infantry vehicles in the $1980's\sim1990's$ and now, we designed a new compact infrared camera and studied a new type of non-uniformity correction lens fer this camera.

Effects of Thermal Contact Resistance on Transient Thermoelastic Contacts for an Elastic Foundation (시간에 따른 탄성지지 열탄성 접촉에 대한 열접촉저항의 영향)

  • Jang, Yong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.330-333
    • /
    • 2005
  • The paper presents a numerical solution to the problem of a hot rigid indenter siding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed regardless of the thermal contact resistance. However, the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady-state the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger number of small contact areas are established, until eventually the accuracy of the algorithm is limited by the discretization used.

  • PDF

Sound Absorption and Thermal Insulation Characteristics of Membrane Used for Sound Field Control (음장제어용 막재료의 음향 및 단열특성)

  • Jeong, Jeong-Ho;Kim, Jeong-Uk;Jeong, Jae-Gun;Cho, Byung-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.103-114
    • /
    • 2012
  • Nowadays membrane material is widely used for large indoor spaces and long spaces such as traditional market. Thermal insulation and sound field control performance is considered as a main properties for design of such buildings. In this paper sound absorption and thermal insulation properties of membrane material was investigated. Firstly, normal incidence sound absorption coefficient of 10 kinds of glass wool textiles showed that sound absorption coefficient was increased in proportion of thickness and surface density of textile. Sound absorption coefficient of 4 kinds of sound absorptive inner membrane with outer membrane was tested in the reverberation chamber. Sound absorption coefficient of mid frequency range was about 0.4 ~ 0.6. Also, sound absorption coefficient was changed by the air space behind the membrane material. Secondly, sound field control performance was investigated using mock-up space. By the installation of sound absorption membrane material, reverberation time was decreased and speech intelligibility was increased. Finally, thermal resistance and room temperature in two kinds of mock-up rooms were tested, simultaneously. Results of thermal properties showed thermal insulation properties ware increased by adding inner membrane material underneath the outer membrane.

Narrowband Active Control of noise in thermal Power Plants using adjoint LMS algorithm (Adjoint LMS 알고리즘을 사용한 화력발전소 소음의 협대역 능동제어)

  • Hwang, Jung-Hyun;Seo, Sung-Dae;Kim, Jun-Lae;Nam, Hyun-Do
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3195-3197
    • /
    • 2000
  • Narrowband active noise control (ANC) techniques to reduce the noise in thermal power plant are considered. To reduce the computational burden of the ANC system, an adjoint LMS algorithm instead of a filteredx LMS algorithm is used for adaptive filters. The square wave signal is used for the reference signal of adaptive filters to reduce the higher order harmonics as well as the fundamental frequency of noise. A computer simulation has done to show the effectiveness of a proposed algorithm.

  • PDF

The performance evaluation of Stirling cryocooler for thermal imaging system (IV) : Vibration, Noise, Leak test (열상장비용 스터링 극저온 냉동기 특성평가 (IV) : 진동, 소음, 누설시험)

  • 박성제;홍용주;김효봉;김양훈;최상규;나종문
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.167-170
    • /
    • 2003
  • This paper presents the results of a series of performance tests for the Stilting cryocooler. A free piston and free displacer(FPFD) Stilting cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM. Our coolers are specifically designed to work in the thermal imaging device and to meet requirements such as cooling capacity, COP and high reliability. In this work, Stilting cryocooler is designed, manufactured and fabricated, and performance characteristics for the vibration, acoustic noise, EMI and leak rate are evaluated. Vibration outputs are measured to 20KHz for compressor and expander, respectively. And, the objective of noise test is a noise level, less than 30㏈ at 5 m. EMI tests are carried out according to the standard MIL-STD-461C tests RE01 and RE02. Leak test for the Stilting cryocooler is performed by bombing method.

  • PDF

Acoustic Amenity Assessment of Urban Environmental Sound for the Ecological Soundscape (친환경 사운드스케이프 조성을 위한 도시 환경음의 쾌적성 평가)

  • Jang, Gil-Soo;Kook, Chan;Shin, Hoon;Ki, No-Gap
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.678-681
    • /
    • 2005
  • The assessment of an urban site depends on the way it responds to multiple needs such as functionality, aesthetic and complex comfort of acoustic, thermal, lighting and air quality This study aims to investigate the assessment of various urban soundscapes in the sense of acoustic amenity by the questionnaires. As a result, acoustic amenity assessment was influenced by the non-acoustic factors such as environment assessment of visual, thermal, air quality etc.. And it was shown that the subjects tend to perceive the noise level less than 3$\sim$10dB L$_{Aeq}$ under the similar noise exposure level according to the urban landscapes.

  • PDF

Self-excited Vibration Characteristics of Cylindrical Composit Shell subject to Thermal Stresses in Supersonic Flow (초음속 유동에서 열응력을 받는 원통형 복합적층 쉘의 자려진동 특성)

  • Oh, Il-Kwon;Lee, In;Koo, Kyo-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.897-903
    • /
    • 2001
  • The supersonic flutter analysis of cylindrical composite panels subject to thermal stresses has been performed using layerwise nonlinear finite elements. The geometric nonlinear finite elements of cylindrical shells are formulated using hamilton's principle with von Karman strain-displacement relationship. Hans Krumhaar's modified supersonic piston theory is appled to calculate aerodynamic loads for the panel flutter analysis. The present results show that the critical dynamic pressure of cylindrical panels under compressive thermal stresses can be dramatically reduced. The margin of aerothermoelastic stability considering thermal and aerodynamic coupling should be verified in the structural design of launch vehicles and high speed aircrafts.

  • PDF

Contour Integral Method for Crack Detection

  • Kim, Woo-Jae;Kim, No-Nyu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.665-670
    • /
    • 2011
  • In this paper, a new approach to detect surface cracks from a noisy thermal image in the infrared thermography is presented using an holomorphic characteristic of temperature field in a thin plate under steady-state thermal condition. The holomorphic function for 2-D heat flow field in the plate was derived from Cauchy Riemann conditions to define a contour integral that varies according to the existence and strength of a singularity in the domain of integration. The contour integral at each point of thermal image eliminated the temperature variation due to heat conduction and suppressed the noise, so that its image emphasized and highlighted the singularity such as crack. This feature of holomorphic function was also investigated numerically using a simple thermal field in the thin plate satisfying the Laplace equation. The simulation results showed that the integral image selected and detected the crack embedded artificially in the plate very well in a noisy environment.