• Title/Summary/Keyword: thermal line sensor

Search Result 47, Processing Time 0.023 seconds

A Study on Electric Safety Control Device for Prevention of Over Current and Short Circuit Faults (과전류 및 단락사고 방지용 전기안전 제어장치에 관한 연구)

  • Jo, Si-Hwan;Kwak, Dong-Kurl;Jung, Do-Young;Shim, Jae-Sun;Kim, Jung-Sook
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2100-2101
    • /
    • 2008
  • This paper is studied on a protective control system for electrical fire and electrical faults due to over current or electric short circuit faults by using electrical thermal characteristics of PTC (Positive Temperature Coefficient) thermistor and current response characteristics of high sensitive reed switch. The PTC thermistor has characteristic of positive resistivity temperature coefficient according to the temperature variation, which is construction of a regular square and cube demarcation with BaTiO3_Ceramics of positive temperature coefficient. Also PTC thermistor shows the phenomenon which is rapidly increased in the resistivity if the temperature is increased over Curie temperature point, and reed switch, which is used for electrical fault current sensing devices, have a excellent characteristic of response velocity in degree of ${\mu}s{\sim}ms$ that sensing magnetic flux in proportion to dimension of line current. This paper is proposed on a protective control system use PTC thermistor and reed switch for sensor which is protected from electrical fire due to overload faults or electric short circuit faults. Some experimental results of the proposed electric safety control device are confirmed to the validity of the analytical results.

  • PDF

Integrity of Optical Fiber Sensor for Measurement of Ground Thermal Conductivity (지중 열전도도 측정을 위한 광섬유 센서의 건전성)

  • Yoon, Seok;Choi, Jung-Chan;Lee, Seung-Rae;Lee, Michael-MyungSub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.157-160
    • /
    • 2011
  • 본 연구에서는 광섬유 센서 기반 스마트 모니터링 시스템이 지중 열전도도 측정에도 효율적으로 적용될 수 있는지를 분석하였다. 이를 위해 광섬유 온도센서를 이용하여 지반의 열전도도를 측정할 수 있는 열응답 시험기가 개발되었다. 개발된 열응답 시험기는 기존의 RTD(Resistance Temperature Detector) 온도 센서 외에 광섬유 센서의 한 종류인 FBG(Fiber Bragg Grating) 센서도 실시간적으로 측정할 수 있는 시스템으로 구성되어 있다. 개발된 장비의 적용성 검증을 위하여 주문진 표준사를 이용하여 모형토조 내에 일정한 간극비에 맞추어 시료가 조성되었으며 지중열교환기는 U자형 파이프가 사용되었다. 20시간동안 열응답 시험을 통하여 광섬유 센서와 RTD 센서를 동시에 이용하여 온도값을 측정하여 표준사의 열전도도 값을 산출하였다. 그 결과 모형실험을 통한 열전도도 값은 탐침법을 통해 얻어진 열전도도 값과 선형 열원 모델(line source model) 해석해와 거의 유사하게 나타났으며 광섬유 센서와 RTD 센서와의 온도차는 0.1~0.3$^{\circ}$로써 유사한 값을 나타내었다. 따라서 본 연구에서 개발된 광섬유 기반 열응답 시험기는 지반의 열전도도를 측정하는데 효과적으로 사용될 수 있음을 알 수 있었으며 향후 지열시스템 가동에 따른 지중열 교환기의 손상도 평가 및 경보시스템 개발을 위해 지중열교환기의 거동을 실시간으로 모니터링 하는데 있어서도 효과적으로 사용될 수 있을 것으로 생각된다.

  • PDF

Ohmic contact formation of single crystalline 3C-SiC for high temperature MEMS applications (초고온 MEMS용 단결정 3C-SiC의 Ohmic Contact 형성)

  • Chung, Gwiy-Sang;Chung, Su-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • This paper describes the ohmic contact formation of single crystalline 3C-SiC thin films heteroepitaxially grown on Si(001) wafers. In this work, a TiW (Titanium-tungsten) film as a contact matieral was deposited by RF magnetron sputter and annealed with the vacuum and RTA (rapid thermal anneal) process respectively. Contact resistivities between the TiW film and the n-type 3C-SiC substrate were measured by the C-TLM (circular transmission line model) method. The contact phases and interface the TiW/3C-SiC were evaulated with XRD (X-ray diffraction), SEM (scanning electron microscope) and AES (Auger electron spectroscopy) depth-profiles, respectively. The TiW film annealed at $1000^{\circ}C$ for 45 sec with the RTA play am important role in formation of ohmic contact with the 3C-SiC substrate and the contact resistance is less than $4.62{\times}10^{-4}{\Omega}{\cdot}cm^{2}$. Moreover, the inter-diffusion at TiW/3C-SiC interface was not generated during before and after annealing, and kept stable state. Therefore, the ohmic contact formation technology of single crystalline 3C-SiC using the TiW film is very suitable for high temperature MEMS applications.

Low Cost Via-Hole Filling Process Using Powder and Solder (파우더와 솔더를 이용한 저비용 비아홀 채움 공정)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Nam, Jae-Woo;Lee, Jong-Hyun;Cho, Chan-Seob;Kim, Bonghwan
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.130-135
    • /
    • 2013
  • This study proposed a noble process to fabricate TSV (Through Silicon Via) structure which has lower cost, shorter production time, and more simple fabrication process than plating method. In order to produce the via holes, the Si wafer was etched by a DRIE (Deep Reactive Ion Etching) process. The via hole was $100{\mu}m$ in diameter and $400{\mu}m$ in depth. A dielectric layer of $SiO_2$ was formed by thermal oxidation on the front side wafer and via hole side wall. An adhesion layer of Ti and a seed layer of Au were deposited. Soldering process was applied to fill the via holes with solder paste and metal powder. When the solder paste was used as via hole metal line, sintering state and electrical properties were excellent. However, electrical connection was poor due to occurrence of many voids. In the case of metal powder, voids were reduced but sintering state and electrical properties were bad. We tried the via hole filling process by using mixing solder paste and metal powder. As a consequence, it was confirmed that mixing rate of solder paste (4) : metal powder (3) was excellent electrical characteristics.

Development of the Infrared Space Telescope, MIRIS

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Nam, Uk-Won;Moon, Bon-Kon;Park, Sung-Joon;Cha, Sang-Mok;Pyo, Jeong-Hyun;Park, Jang-Hyun;Ka, Nung-Hyun;Seon, Kwang-Il;Lee, Duk-Hang;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • MIRIS (Multipurpose Infra-Red Imaging System), is a small infrared space telescope which is being developed by KASI, as the main payload of Science and Technology Satellite 3 (STSAT-3). Two wideband filters (I and H) of the MIRIS enables us to study the cosmic infrared background by detecting the absolute background brightness. The narrow band filter for Paschen ${\alpha}$ emission line observation will be employed to survey the Galactic plane for the study of warm ionized medium and interstellar turbulence. The opto-mechanical design of the MIRIS is optimized to operate around 200K for the telescope, and the cryogenic temperature around 90K for the sensor in the orbit, by using passive and active cooling technique, respectively. The engineering and qualification model of the MIRIS has been fabricated and successfully passed various environmental tests, including thermal, vacuum, vibration and shock tests. The flight model was also assembled and is in the process of system optimization to be launched in 2012 by a Russian rocket. The mission operation scenario and the data reduction software is now being developed. After the successful mission of FIMS (the main payload of STSAT-1), MIRIS is the second Korean space telescope, and will be an important step towards the future of Korean space astronomy.

  • PDF

A Study on the Characteristics Assessment and Fabrication of Distribution Board according to KEMC Standards (KEMC 규정에 의한 분전반의 제작 및 특성 평가에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.63-72
    • /
    • 2017
  • This study fabricated a low-voltage 10 circuit distribution board based on the KEMC (Korea Electrical Manufacturers Cooperative) 2102-610 standard and performed a characteristics assessment of the developed 10 circuit distribution board to secure product stability. The developed 10 circuit distribution board is designed to have the characteristics of insulation materials, as well as resistance to corrosion ultraviolet radiation and mechanical impact. The developed distribution board is fabricated to have an appropriate protection class of enclosure, electric shock prevention and protection circuits, switchgear and its components, internal electrical circuits and connectors, external conduct terminal, insulation characteristics, temperature rise test, heat resistance, etc. The developed 10 circuit distribution board consists of a single phase circuit and 3-phase circuits. It is possible to measure in real time the leakage current generated from the load distribution line by installing a sensor module at the load side of each of the branched switchgears. In addition, it is possible to increase a circuit according to the use and purpose of the load and to also manage and check the load in real time. Temperature rise tests were performed on the developed 10 circuit distribution board at 18 places including the inlet connection, main circuit and distribution circuit bus bars and bus bar supports, etc. The highest temperature of $65.3^{\circ}C$ was measured at the R-Phase of the connection of the MCCB power supply for the branch circuit bus bar and a temperature rise of $61.6^{\circ}C$ was measured at the T-Phase of the load side. When applying thermal stress to an MCCB for 6 hours at $180^{\circ}C$ using a heat resistant experimental device, it was found that the actuator lever was transformed and moved in the tripped state.

An Analysis of Geophysical and Temperature Monitoring Data for Leakage Detection of Earth Dam (흙댐의 누수구역 판별을 위한 물리탐사와 온도 모니터링 자료의 해석)

  • Oh, Seok-Hoon;Suh, Baek-Soo;Kim, Joong-Ryul
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.563-572
    • /
    • 2010
  • Both multi-channel temperature monitoring and geophysical electric survey were performed together for an embankment to assess the leakage zone. Temperature variation according to space and time on the inner parts of engineering constructions (e.g.: dam and slope) can be basic information for diagnosing their safety problem. In general, as constructions become superannuated, structural deformation (e.g.: cracks and defects) could be generated by various factors. Seepage or leakage of water through the cracks or defects in old dams will directly cause temperature anomaly. This study shows that the position of seepage or leakage in dam body can be detected by multi-channel temperature monitoring using thermal line sensor. For that matter, diverse temperature monitoring experiments for a leakage physical model were performed in the laboratory. In field application of an old earth fill dam, temperature variations for water depth and for inner parts of boreholes located at downstream slope were measured. Temperature monitoring results for a long time at the bottom of downstream slope of the dam showed the possibility that temperature monitoring can provide the synthetic information about flowing path and quantity of seepage of leakage in dam body. Geophysical data by electrical method are also added to help interpret data.