• Title/Summary/Keyword: thermal limit

Search Result 501, Processing Time 0.032 seconds

The Design, Fabrication, and Characteristic Experiment of Electromagnet to Control Element Drive Mechanism in System-Integrated Modular Advanced Reactor (일체형원자로 제어봉구동장치에 장착되는 전자석의 설계 및 특성해석)

  • 허형;김종인;김건중
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.147-147
    • /
    • 2003
  • This paper describes the finite element analysis(FEA) for the design of electromagnet for Control Element Drive Mechanism(CEDM) in System-integrated Modular Advanced Reactor(SMART) and compared with the lifting power characteristics of prototype electromagnet. A thermal analysis was performed for the electromagnet. A model for the thermal analysis of the electromagnet was developed and theoretical bases for the model were established. It is important that the temperature of the electromagnet windings be maintained within the allowable limit of the insulation. since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. As a result, it is shown that the characteristics of prototype electromagnet have a good agreement with the results of FEA. The thermal properties obtained here will be used as input for the optimization analysis of the electromagnet.

Behavioral responses and tolerance limits of wild goldeye rockfish Sebastes thompsoni to high temperature exposure (고 수온 노출에 따른 자연산 불볼락 Sebastes thompsoni의 행동반응 및 내성 한계)

  • Sung-Jin Yoon;Jin-Hyeok Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.247-254
    • /
    • 2022
  • To investigate the tolerance limit and critical thermal maximum (CTM), behavioral responses of wild goldeye rockfish Sebastes thompsoni according to exposure to high water temperature were observed using a continuous behavior tracking system. As a result, behavioral index (BI) of S. thompsoni in each temperature (20.0, 25.0, and 30.0℃) showed a significant difference (p<0.05) when compared with the value measured in a stable condition of 15.0℃. The activity level of S. thompsoni exposed to 25.0℃ decreased sharply after 20 hours. Their rest time at the bottom of experiment chamber increased, and their normal swimming and metabolic activities were disturbed. In addition, at a high water temperature of 30.0℃, S. thompsoni reached the limit of resistance and showed a sub-lethal reaction of swimming behavior, with energy consumption in the body increased and all test organisms died. In conclusion, the eco-physiological response of S. thompsoni to water temperature varied greatly depending on the fluctuation range of the exposed temperature and the exposure time. In addition, the tolerance limit of S. thompsoni to high water temperature was predicted to be 25.0-30.0℃. The maximum critical thermal that had a great influence on the survival of this species was found to be around 30.0℃.

Effect of Moisture on the Melting Point and High-Temperature Stability of NaKZn-Chloride (수분이 NaKZn-Chloride의 녹는점과 고온안정성에 미치는 영향)

  • Lee, Jeong Hwan;Kim, Young;Yoon, Seok Ho;Lee, Kong Hoon;Choi, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.555-560
    • /
    • 2018
  • The high temperature stability of a chloride mixture, $NaCl-KCl-ZnCl_2$ (NaKZn-Chloride), is investigated to evaluate its potential as a thermal storage material. A thermal storage media should maintain a stable thermal properties within the temperature range of heat storage. Results from an a priori experiment showed that the NaKZn-chloride is stable only up the much lower temperature, while its stability limit is reported to be $850^{\circ}C$ in the literature. This study aims to investigate if the thermal property is changed by the moisture absorbed in the heat storage material. The effect of moisture content on the thermal properties was measured. The results show that the melting point remains the same regardless of the amount of moisture absorbed. Meanwhile, the high temperature stability is lower for the moisture treated samples. The results of this work infer that the loss of a hygroscopic thermal storage media can be reduced by avoiding its contacts to moisture in designing high temperature thermal storage systems.

Averaging Approach for Microchannel Heat Sinks Subjected to the Uniform Wall Temperature Condition (등온 경계 조건을 가지는 마이크로채널 히트 싱크의 열성능 해석을 위한 평균 접근법)

  • Kim, Dong-Kwon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1247-1252
    • /
    • 2004
  • The present paper is devoted to the modeling method based on an averaging approach for thermal analysis of microchannel heat sinks subjected to the uniform wall temperature condition. Solutions for velocity and temperature distributions are presented using the averaging approach. When the aspect ratio of the microchannel is higher than 1, these solutions accurately evaluate thermal resistances of heat sinks. Asymptotic solutions for velocity and temperature distributions at the high-aspect-ratio limit are alsopresented by using the scale analysis. Asymptotic solutions are simple, but shown to predict thermal resistances accurately when the aspect ratio is higher than 10. The effects of the aspect ratio and the porosity on the friction factor and the Nusselt number are presented. Characteristics of the thermal resistance of microchannel heat sinks are also discussed.

  • PDF

Effects of Ambient Temperature on the Thermal Characteristics of Photovoltaic Modules (대기온도에 따른 태양전지 모듈의 열적 특성에 관한 연구)

  • Kim, Jong-Pil;Jeon, Chung-Hwan;Chang, Young-June
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.48-52
    • /
    • 2008
  • The photovoltaic modules are affected by heat. The hotter the PV module, the lower the power output, then the life time will be short. If the cell temperature rises above a certain limit the encapsulating materials can be damaged, and this will degrade the performance of the PV module. This paper presents that the PV module temperature can be estimated by using thermal analysis programs, and demonstrates the thermal characteristics of the PV module.

  • PDF

Probabilistic Fracture Mechanics Analysis of Reactor Vessel for Pressurized Thermal Shock - The Effect of Residual Stress and Fracture Toughness - (가압열충격에 대한 원자로 용기의 확률론적 파괴역학해석 - 잔류응력 및 파괴인성곡선의 영향 -)

  • Jung, Sung-Gyu;Jin, Tae-Eun;Jhung, Myung-Jo;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.987-996
    • /
    • 2003
  • The structural integrity of the reactor vessel with the approaching end of life must be assured for pressurized thermal shock. The regulation specifies the screening criteria for this and requires that specific analysis be performed for the reactor vessel which is anticipated to exceed the screening criteria at the end of plant life. In case the screening criteria is exceeded by the deterministic analysis, probabilistic analysis must be performed to show that failure probability Is within the limit. In this study, probabilistic fracture mechanics analysis of the reactor vessel for pressurized thermal shock is performed and the effects of residual stress and master curve on the failure probability are investigated.

A Study on Improvement of Electic Motor Thermal Performance Using CFD (CFD를 이용한 전동기 냉각성능 개선에 관한 연구)

  • Yang, Pan-Seok;Lee, Ho-Jun;Jung, Won-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.261-265
    • /
    • 2003
  • As motor performance enhancement by improving electric design has reached its limit and downsizing issue has risen, the importance of thermal design is increasing. In this study, the flow and temperature distribution were reviewed with the help of CFD analysis and this result was compared with the experimental results. Furthermore, parametric analysis with thermal design structure showed that axial duct width but fan capacity is a critical factor to lower the hot spot temperature in electric motor.

  • PDF

A Study on the Thermal Characteristics of Photovoltaic Modules (태양전지 모듈의 열적 특성에 관한 연구)

  • Kim, Jong-Pil;Park, Hyun-Woo;Jeon, Chung-Hwan;Chang, Young-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.121-123
    • /
    • 2008
  • The PV modules are affected by heat. The hotter the PV module, the lower the power output, then the life time will be short. If the cell temperature rises above a certain limit the encapsulating materials can be damaged, and this will degrade the performance of the PV module. This is called the ‘hot spot’ formation. This paper presents that the PV module temperature can be estimated by using a thermal analysis program, and demonstrates the thermal characteristics of the PV module.

  • PDF

Thermal contact resistance on elastoplastic nanosized contact spots (탄소성접촉면의 나노스케일 열접촉저항)

  • Lee, Sang-Young;Cho, Hyun;Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2214-2219
    • /
    • 2008
  • The thermal contact resistance(TCR) of nanosized contact spots has been investigated through a multiscale analysis which considers the resolution of surface topography. A numerical simulation is performed on the finite element model of rough surfaces. Especially, as the contact size decreases below the phonon mean free path, the size dependent thermal conductivity is considered to calculate the TCR. In our earlier model which follows an elastic material, the TCR increases without limits as the number of nanosized contact spots increases in the process of scale variation. However, the elastoplastic contact induces a finite limit of TCR as the scale varies. The results are explained through the plastic behavior of the two contacting models. Furthermore, the effect of air conduction in nanoscale is also investigated.

  • PDF

Stress and Thermal Analyses of Pressure Housing of SMART CEDM (SMART제어봉구동장치의 압력용기에 대한 응력 및 열해석)

  • 조대희;유제용;김지호;김종인
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.343-350
    • /
    • 2002
  • The structural stability of pressure housing of SMART CEDM forming pressure boundary must be evaluated. In this paper, the stress and thermal analyses of the upper pressure housing of CEDM are performed for design pressure, hydraulic test pressure and thermal loading. Finite element and boundary condition were generated from the model which is made by I-DEAS program and the stress and thermal analyses were performed by ANSYS Program. The upper Pressure housing was analysed using 2D axisymmetric model because it is symmetry about an axis. The stress values obtained by analysis were compared with the stress intensity limit of ASME and KEPIC MNB standard.

  • PDF