• 제목/요약/키워드: thermal limit

검색결과 502건 처리시간 0.028초

Direct-drive를 활용한 소형 연속 도약 로봇 및 DC모터의 열 모델을 통한 한계 분석 (Hopping Robot Using Direct-drive Method and Thermal Modeling to Analyze Motor Limitation)

  • 장명진;양선교;정광필
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.53-57
    • /
    • 2024
  • A hopping robot can move through a confined environment while overcoming obstacles. To create a small hopping robot, it must be able to generate a large amount of energy and release it at the same time. However, due to the small size of the robot, there is a limit to the size of the actuator that can be used, so it is mainly used to collect energy in an elastic element and release it at once. In this paper, we propose a small hopping robot with a simplified design by removing ancillary parts and enabling continuous hopping using only a small actuator based on a direct-drive method. In addition, repeated actuation over the rated voltage can cause thermal breakdown of the actuator. To check the safety of the actuator at high voltage, we perform modeling to predict the temperature of the actuator and verify the accuracy of the modeling through experiments.

Design and optimization of thermal neutron activation device based on 5 MeV electron linear accelerator

  • Mahnoush Masoumi;S. Farhad Masoudi;Faezeh Rahmani
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4246-4251
    • /
    • 2023
  • The optimized design of a Neutron Activation Analysis (NAA) system, including Delayed Gamma NAA (DGNAA) and Prompt Gamma NAA (PGNAA), has been proposed in this research based on Mevex Linac with 5 MeV electron energy and 50 kW power as a neutron source. Based on the MCNPX 2.6 simulation, the optimized configuration contains; tungsten as an electron-photon converter, BeO as a photoneutron target, BeD2 and plexiglass as moderators, and graphite as a reflector and collimator, as well as lead as a gamma shield. The obtained thermal neutron flux at the beam port is equal to 2.06 × 109 (# /cm2.s). In addition, using the optimized neutron beam, the detection limit has been calculated for some elements such as H-1, B-10, Na-23, Al-27, and Ti-48. The HPGe Coaxial detector has been used to measure gamma rays emitted by nuclides in the sample. By the results, the proposed system can be an appropriate solution to measure the concentration and toxicity of elements in different samples such as food, soil, and plant samples.

온실용 다겹보온자재의 보온성 비교 -Hot box 시험 결과를 중심으로- (Comparison of Thermal Insulation of Multi-Layer Thermal Screens for Greenhouse: Results of Hot-Box Test)

  • 윤성욱;이시영;강동현;손진관;박민정;김희태;최덕규
    • 생물환경조절학회지
    • /
    • 제28권3호
    • /
    • pp.255-264
    • /
    • 2019
  • 본 연구에서는 현장 온실농가에서 수명이 다하여 교체작업이 이루어진 총 4종의 다겹보온자재를 채취하여 해당 사용기간별 보온성의 변화를 비교하기 위해 여기서 고안된 Hot box 시험이 실시되었다. 4종의 다겹보온자재는 마트지, 부직포, PE폼 및 화학솜 등이 주요 재료로서 다겹보온자재별로 이 재료들이 서로 다르게 조합된 형태였다. 이 4종의 다겹보온자재를 시편($70{\times}70cm$)으로 제작하여 Hot box 시험을 통해서 대상시편별로 온도 하강률, 열관류율 및 열전도저항 등이 측정되었다. 그 결과를 요약하면 다음과 같다. 본 연구에서 사용된 다겹보온자재들에 대하여 적절한 보온성능을 기대할 수 있는 사용기간은 약 5년 정도로 예상되었다. 다겹보온자재의 재료조합에 대하여 다겹의 PE폼을 적용하여 상대적으로 보온성을 높일 수 있으나 다겹보온자재 내에서 공기 단열층을 형성하는 화학솜에 비해 보온성능에 대한 기여가 현저히 낮은 것으로 판단되었다. 다겹보온자재에 대하여 적절한 보온성능을 기대하기 위해서는 기본적으로 화학솜과 같은 공기 단열층을 형성하는 기능이 있는 재료가 다겹보온자재에 포함되어야 될 것으로 판단되었다. 본 연구에서 고안된 Hot box 시험을 통해 다겹보온 자재의 온도 하강률, 열관류율 및 열전도저항 등이 적절하게 측정되었다. 그러나 본 연구는 사용이 완료된 다겹보온자재의 채취 어려움으로 총 4종의 다겹보온자재만 고려되었으며, 이는 비교적 적은 사례로 통해 얻어진 결과라 할 수 있으며, 본 연구의 한계이다. 향후 관련 연구를 통해 더 많은 사례들이 조사 및 보완되어야 될 것이다.

액랭식 마이크로채널 시스템 내 냉매와 범프의 열 제거 효과에 대한 연구 (Effect of Coolants and Metal Bumps on the heat Removal of Liquid Cooled Microchannel System)

  • 원용현;김성동;김사라은경
    • 마이크로전자및패키징학회지
    • /
    • 제24권2호
    • /
    • pp.61-67
    • /
    • 2017
  • 소자의 트랜지스터 밀도가 급속히 높아짐에 따라 소자 내부에서 발생하는 열 유속(heat flux) 또한 빠르게 증가하고 있다. 소자의 고열 문제는 소자의 성능과 신뢰성 감소에 크게 영향을 미친다. 기존의 냉각방법들은 이러한 고열문제를 해결하기 위해선 한계점에 다다랐고, 그 대안으로 liquid heat pipe, thermoelectric cooler, thermal Si via, 등 여러 냉각방법이 연구되고 있다. 본 실험에서는 직선형 마이크로채널과 TSV(through Si via)를 이용한 액체 냉각시스템을 연구하였다. 두 종류의 냉매(DI water와 ethylene glycol(70 wt%))와 3 종류의 금속 범프(Ag, Cu, Cr/Au/Cu)의 영향을 분석하였으며, 대류, 복사 및 액체 냉각으로 인한 총 열 유속을 계산하여 비교하였다. 냉각 전후의 냉각시스템의 표면온도는 적외선현미경을 통해 측정하였고, 마이크로채널 내 액체 흐름은 형광현미경을 이용하여 측정하였다. 총 열 유속은 ethylene glycol(70 wt%)의 경우 가열 온도 $200^{\circ}C$에서 $2.42W/cm^2$로 나타났으며 대부분 액체 냉각 효과에 의한 결과로 확인되었다.

High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite

  • Jongyoul Lee;Kwangil Kim;Inyoung Kim;Heejae Ju;Jongtae Jeong;Changsoo Lee;Jung-Woo Kim;Dongkeun Cho
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1540-1554
    • /
    • 2023
  • To use nuclear energy sustainably, spent nuclear fuel, classified as high-level radioactive waste and inevitably discharged after electricity generation by nuclear power plants, must be managed safely and isolated from the human environment. In Korea, the land area is limited and the amount of high-level radioactive waste, including spent nuclear fuels to be disposed, is relatively large. Thus, it is particularly necessary to maximize disposal efficiency. In this study, a high-efficiency deep geological repository concept was developed to enhance disposal efficiency. To this end, design strategies and requirements for a high-efficiency deep geological repository system were established, and engineered barrier modules with a disposal canister for pressurized water reactor (PWR)-type and pressurized heavy water reactor type Canada deuterium uranium (CANDU) plants were developed. Thermal and structural stability assessments were conducted for the repository system; it was confirmed that the system was suitable for the established strategies and requirements. In addition, the results of the nuclear safety assessment showed that the radiological safety of the new system met the Korean safety standards for disposal of high-level radioactive waste in terms of radiological dose. To evaluate disposal efficiency in terms of the disposal area, the layout of the developed disposal areas was assessed in terms of thermal limits. The estimated disposal areas were 2.51 km2 and 1.82 km2 (existing repository system: 4.57 km2) and the excavated host rock volumes were 2.7 Mm3 and 2.0 Mm3 (existing repository system: 4.5 Mm3) for thermal limits of 100 ℃ and 130 ℃, respectively. These results indicated that the area and the excavated volume of the new repository system were reduced by 40-60% compared to the existing repository system. In addition, methods to further improve the efficiency were derived for the disposal area for deep geological disposal of spent nuclear fuel. The results of this study are expected to be useful in establishing a national high-level radioactive waste management policy, and for the design of a commercial deep geological repository system for spent nuclear fuels.

Metabolic Rate and Thermolabile Properties of Ognev's Great Tube-nosed Bat Murina leucogaster in Response to Variable Ambient Temperature

  • 최인호;오용근;정노팔;강병주;신형철
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.49-53
    • /
    • 1998
  • The winter-resident Korean bats, Murina leucogaster ognevi, show a circadian cycle of thermoregulation and locomotion in summer, as do other bat species in temperate regions. They are most active between dusk and dawn with body temperature (Tb) of 35-4OC, and are usually torpid in their roost sites for the rest of day with their Tb close to ambient temperature (Ta) of around 15C. The present study was conducted to determine thermogenic and thermolabile properties of the heterothermic bats that would influence their daily feeding activities and ultimately, their energy conservation strategy. Testing on active male Murina, resting metabolic rate (RMR, gauged by oxygen consumption rate) at the lower limit of thermoneutral zone (31C) was 2.0 L kq-1 h-1. The regression slope of RMR below the thermoneutral zone (an index of metabolic thermal sensitivity) was -0.38 L $kg^{-l} h^{-1} C^{-1}$. The metabolic rate at the roost Ta (15C) was 4.5 times the lowest RMR in the active state but becomes nearly zero in the torpid state. This implies that by being torpid during daytime (between dawn and dusk), the individual bats would save about 4.7 kcal each day in mid-summer. Interspecific comparisons of thermal metabolic response over a mass scale suggest that the smaller bats show a relatively higher metabolic rate in thermoneutral zone and a greater thermal sensitivity of metabolism, which follows the general principle seen in homeothermic metabolism. Thermolabile features in metabolic responses seem to be fairly common for these bats in conditions other than a fully active state. Types of thermolabile responses and their energetic significance are discussed.

  • PDF

Fe-29%Ni-17%Co 저열팽창 합금의 피로 특성에 미치는 알파상의 영향 (Effects of Alpha Phase on the Fatigue Properties of Fe-29%Ni-17%Co Low Thermal Expansion Alloy)

  • 김민종;권진한;조규상;이기안
    • 한국재료학회지
    • /
    • 제24권9호
    • /
    • pp.481-487
    • /
    • 2014
  • The effect of alpha phase on the fatigue properties of Fe-29%Ni-17%Co low thermal expansion alloy was investigated. Two kinds of alloys (Base alloy and Alpha alloy) were prepared by controlling the minimal alloy composition. Microstructure observation, tensile, high-cycle fatigue, and low-cycle fatigue results were measured in this study. The Base alloy microstructure showed typical austenite ${\gamma}$ phase. Alpha alloy represented the dispersed phase in the austenite ${\gamma}$ matrix. As a result of tensile testing, Alpha alloy was found to have higher strengths (Y.S. & T.S.) and lower elongation compared to those of the Base alloy. High cycle fatigue results showed that Alpha alloy had a higher fatigue limit (360MPa) than that (330MPa) of the Base alloy. The Alpha alloy exhibited the superior high cycle fatigue property in all of the fatigue stress conditions. SEM fractography results showed that the alpha phase could act to effectively retard both fatigue crack initiation and crack propagation. In the case of low-cycle fatigue, the Base alloy had longer fatigue life in the high plastic strain amplitude region and the Alpha alloy showed better fatigue property only in the low plastic strain amplitude region. The fatigue deformation behavior of the Fe-29%Ni-17%Co alloy was also discussed as related with its microstructure.

Breakdown Characteristics and Lifetime Estimation of Rubber Insulating Gloves Using Statistical Models

  • Kim, Doo Hyun;Kang, Dong Kyu
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.36-42
    • /
    • 2002
  • This paper is aimed at predicting the life of rubber insulating gloves under normal operating stresses from relatively rapid test performed at higher stresses. Specimens of rubber insulating gloves are subject to multiple stress conditions, i.e. combined electrical and thermal stresses. Two modes of electrical stress, step voltage stress and constant voltage stress are used in specimen aging. There are two types of test for electrical stress in this experiment: the one is Breakdown Voltage (BDV) test under step voltage stress and thermal stress and the other is lifetime test under constant voltage stress and temperature stress. The ac breakdown voltage defined as the break-down point of insulation that leakage current excesses a limit value, l0mA in this experiment, is determined. Because the very high variability of aging data requires the application of statistical model, Weibull distribution is used to represent the failure times as the straight line on Weibull probability paper. Weibull parameters are deter-mined by three statistical methods i.e. maximum likelihood method, graphical method and least squares method, which employ SAS package, Weibull probability paper and FORTRAN, respectively. Two chosen models for predicting the life under simultaneous electrical and thermal stresses are inverse power model and exponential model. And the constants of life equation for multistress aging are calculated using numerical method, such as Gauss Jordan method etc.. The completion of life equation enables to estimate the life at normal stress based on the data collected from accelerated aging test. Also the comparison of the calculated lifetimes between the inverse power model and the exponential model is carried out. And the lifetimes calculated by three statistical methods with lower voltage than test voltage are compared. The results obtained from the suggested experimental method are presented and discussed.

열화상 분석을 통한 바리스터의 직렬과 병렬 조합의 안전성 평가 (Stability Evaluation of Series and Parallel Varistor Combination Using Thermal Image Analysis)

  • 엄주홍;조성철;이태형;한후석
    • 조명전기설비학회논문지
    • /
    • 제20권8호
    • /
    • pp.22-29
    • /
    • 2006
  • IEC 규격을 기반으로 최근에 개정된 KS 규격에 따라 등전위 접지시스템이 중요하게 자리매김 하였으며, 전원시스템의 안정성을 위해 서지보호소자의 사용이 급격히 증가하고 있다. 내재된 비선형 저항성분으로 뛰어난 V-I 특성을 가지는 $Z_nO$ 바리스터는 서지전압을 제한하여 서지전류로 환류시키기 위해 전원용 보호기로 주로 사용되고 있다. 이러한 $Z_nO$ 바리스터는 교류 전원선에 접속하기 위해서 몇 가지 회로조합 형태로 구성되어 사용되는데, 사용자는 바리스터를 직렬 혹은 병렬로 조합하여 사용함에 있어서 안전에 직접적으로 관련된 기능이나 열적 안정성을 포함한 많은 것들을 고려하여야 한다. 본 논문에서는 40[kA]의 전류용량을 가지는 단일 바리스터 소자와 직렬 혹은 병렬 회로조합의 바리스터에 대하여 잔류전압, 방전전류, 누설전류, 표면온도를 측정하여 각각의 조합형태에 따라 안정성을 비교하였다.

Filled Skutterudites: from Single to Multiple Filling

  • Xi, Lili;Zhang, Wenqing;Chen, Lidong;Yang, Jihui
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.54-60
    • /
    • 2010
  • This paper shortly reviews our recent work on filled skutterudites, which are considered to be one of the most promising thermoelectric (TE) materials due to their excellent power factors and relatively low thermal conductivities. The filled skutterudite system also provides a platform for studying void filling physics/chemistry in compounds with intrinsic lattice voids. By using ab initio calculations and thermodynamic analysis, our group has made progresses in understanding the filling fraction limit (FFL) for single fillers in $CoSb_3$, and ultra-high FFLs in a few alkali-metal-filled $CoSb_3$ have been predicted and then been confirmed experimentally. FFLs in multiple-element-filled $CoSb_3$ are also investigated and anonymous filling behavior is found in a few specific systems. The calculated and measured FFLs, in both single and multiple-filled $CoSb_3$ systems, show good accordance so far. The thermal transport properties can be understood qualitatively by a phonon resonance scattering model, and it seems that a scaling rule may exist between the lattice thermal resistivity and the resonance frequency of filler atoms in filled system. Even though a few things become clear now, there are still many unsolved issues that call for further work.